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We propose a minimax concave penalized multi-armed bandit algorithm under the generalized linear

model (G-MCP-Bandit) for decision-makers facing high-dimensional data in an online learning and decision-

making environment. We demonstrate that in the data-rich regime, the G-MCP-Bandit algorithm attains

a regret upper bound of Õ(s2 logd logT ), which attains the optimal cumulative regret in the sample size

dimension T and a tight bound in the covariate dimension d and the significant covariate dimension s, where

Õ(·) suppresses the logarithmic dependence on s. In the data-poor regime, the G-MCP-Bandit algorithm

maintains a tight regret upper bound of Õ(s2(logd+ logT ) logT ). In addition, we develop a local linear

approximation method, the 2-step weighted Lasso procedure, to identify the Minimax Concave Penalty

(MCP) estimator for the G-MCP-Bandit algorithm under non-i.i.d. samples. Under this procedure, the MCP

estimator can match the oracle estimator with high probability and converge to the true parameters at the

optimal convergence rate. Finally, through experiments based on both synthetic and real datasets, we show

that the G-MCP-bandit algorithm outperforms other benchmarking algorithms in terms of cumulative regret

and that the benefits of the G-MCP-Bandit algorithm increase in the data’s sparsity level and the size of

the decision set.

Key words : Multi-armed bandits, minimax concave penalty, high-dimensional data, online learning and

decision-making, generalized linear model.

1. Introduction

Individual-level data has become increasingly accessible in the internet age, allowing decision-

makers in various industries, such as healthcare, retail, and advertising, to accumulate data at

an extraordinary speed. User-specific data, including demographics, geographic information, med-

ical records, and search/browsing history, are now widely available. This growing availability of

data offers decision-makers unprecedented opportunities to tailor decisions to individual users. For

instance, doctors can personalize treatments for patients based on their medical history, clinical

tests, and biomarkers; search engines can offer personalized advertisements based on users’ queries,

demographics, and geographic information.
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These user-specific data are often collected sequentially over time, during which decision-makers

adaptively learn to predict the expected rewards based on users’ responses to each available decision

as a function of the user-specific data (i.e., the user’s covariates) and optimally adjust decisions to

maximize their rewards – an online learning and decision-making process, which requires a careful

balance between exploration and exploitation. Consider decision-makers who select decisions for

incoming users and obtains rewards based on users’ responses. To maximize their expected rewards,

decision-makers first need an accurate predictive model for users’ responses, typically uncertain

at the beginning but can be partially learned through collecting samples of users’ responses. On

the one hand, decision-makers could select a decision that yields the “highest”, based on their

best knowledge so far, expected reward (i.e., exploitation). Yet, this decision can be suboptimal,

as the selection is based on a potentially wrong prediction of users’ responses, misled by limited

samples. Even worse, decision-makers could incorrectly estimate the expected reward of the true

optimal decision to be low and never have a chance to correct such a mistake (as decision-makers

will not select the true optimal decision due to the current low reward prediction, they will not

generate additional samples to be able to learn and correct their incorrect estimation). On the other

hand, decision-makers can improve their predictive ability and learn users’ responses by collecting

more response samples, which often are obtained through costly random user experiments and/or

clinical trials (i.e., exploration). The exploration and exploitation dilemma has been extensively

studied in the multi-armed bandit model (Robbins 1952), but the growing dimensionality and data

availability have added another layer of complexity.

In practice, individual-level data are typically presented in a high-dimensional fashion, which

poses significant computational and statistical challenges. Traditional statistical methods, such

as Ordinary Least Squares (OLS), require a large number of samples (e.g., the sample size must

be larger than the covariate dimension) to be computationally feasible. Under high-dimensional

settings, learning accurate predictive models requires a substantial amount of samples, which are

obtained, if possible, through costly trials or experiments. Take the search advertising industry

for example. Search advertising occurs when an Internet user searches certain keyword(s) (i.e., a

query) in an online search engine, and then the search engine displays search results, in response to

the user’s query, and some sponsored ads, in response to the query and user-specific information.

To select the ad that maximizes its revenue, the search engine must have accurate estimations of

users’ clicking probabilities in response to the displayed ads – Click-Through Rate (CTR).

However, the search engine’s ability to accurately predict CTR is often crippled by the high-

dimensional data with limited samples. Counting more than three-quarters of a million distinct

words and their combinations (OxfordDictionaries 2018), there are nearly infinite possible queries

the user can submit to the search engine. For example, from 2003 to 2012, Google answered 450



3

billion unique queries, and it has been estimated that 16% to 20% of queries submitted every day

have never been used before (Mitchell 2012). Hence, to accurately estimate a single ad’s CTR

to these queries, the search engine requires billions, if not trillions, of samples. The craving for

samples will be further intensified if the search engine practices personalized advertising by taking

users’ individual information (such as demographics and geographic information) into considera-

tion. However, the available samples for the search engine to learn and predict CTR are greatly

limited. Consider a 45-day marketing campaign promoting a sales event or merchandise, during

which time an average ad is expected to reach approximately one-third of a million users (Word-

Stream 2017, Shewan 2017). Among these users, a very small portion can be selected to perform

costly experiments to learn CTR, so the size of samples is much smaller compared to the dimension

of queries and individual data.

In this paper, we propose the G-MCP-Bandit algorithm for online learning and decision-making

problems under high-dimensional settings. Our algorithm follows the ideas of the bandit model and

develops a ϵ-decay random sampling method to balance the exploration-and-exploitation trade-off.

We allow decision-makers’ reward function to follow the generalized linear model (McCullagh and

Nelder 1989), which is a large class of models including the linear model, the logistic model, the

Poisson regression model, etc., and we develop the MCP estimator, which builds on the Minimax

Concave Penalized (MCP) method (Zhang 2010) and solved by a 2-step weighted Lasso (2sWL)

procedure, to improve the parameter estimations in high-dimensional settings.

Main Contribution:

1. We derive new oracle inequalities for the MCP estimator under non-i.i.d. samples. In particu-

lar, we show that the MCP estimator matches the oracle estimator with high probability and

converges to the true parameter with the optimal convergence rate. Since the bandit model

mixes the exploitation and exploration steps, samples generated under the exploitation steps

may be non-i.i.d.. Therefore, we adopt a matrix perturbation technique to derive new oracle

inequalities for the MCP estimator under non-i.i.d. samples. To the best of our knowledge,

this work is the first one that applies MCP to handle non-i.i.d. samples.

2. We prove that the G-MCP-Bandit algorithm improves the regret upper bound to

Õ (s2 logd logT ) in the data-rich regime and Õ (s2(logd+ logT ) logT ) in the data-poor regime.

Specifically, we show that in the data-rich regime, where T exceeds a time threshold that

depends on the magnitude of the signal for significant covariates, the cumulative regret of

the G-MCP-Bandit algorithm over T users is at most O(logT ), which improves the poly-

logarithmic bound from the Lasso-Bandit algorithm under high-dimensional setting (i.e.,

O(s2(logd+ logT )2) in Bastani and Bayati 2020) and also is the optimal/lowest theoretical

bound for all possible algorithms (Goldenshluger and Zeevi 2013). Further, we show that the
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G-MCP-Bandit algorithm also attains a tight bound in the covariate dimension d and the

significant covariate dimension s, Õ(s2 logd), in both data-poor and data-rich regimes.

3. Through both synthetic-data-based and real-data-based experiments, we demonstrate that

the G-MCP-Bandit algorithm performs favorably to other benchmarking algorithms. Through

two synthetic-data-based experiments, we benchmark the G-MCP-Bandit algorithm’s perfor-

mance to other state-of-the-art bandit algorithms designed both in low-dimensional settings

(i.e., OLS-Bandit by Goldenshluger and Zeevi 2013 and OFUL by Abbasi-Yadkori et al. 2011)

and in high-dimensional settings (i.e., Lasso-Bandit by Bastani and Bayati 2020). We observe

that the G-MCP-Bandit algorithm has the lowest cumulative regret. Furthermore, the benefits

of the G-MCP-Bandit algorithm over other benchmarking algorithms tend to increase with

the data’s sparsity level and the size of the decision set. Finally, we evaluate the G-MCP-

Bandit algorithm’s performance through a real-data-based experiment via the Tencent search

advertising dataset, where the technical assumptions specified for the theoretical analysis of

the G-MCP-Bandit algorithm’s expected cumulative regret may not hold. We observe that the

G-MCP-Bandit algorithm continues to perform favorably and that the choice of the underly-

ing reward model can significantly influence the G-MCP-Bandit algorithm’s performance. In

particular, under the logistic model, which is a special case of the generalized linear model,

the G-MCP-Bandit algorithm merely needs 20 user samples to outperform other benchmark-

ing algorithms. This observation suggests that understanding the context of the underlying

managerial problem and identifying the appropriate model for the G-MCP-Bandit algorithm

can be critical and bring decision-makers substantial revenue improvement.

2. Literature Review

This research is closely related to the exploration-exploitation trade-off in the multi-armed bandit

literature. Rigollet and Zeevi (2010), Slivkins (2014) follow the non-parametric approach and con-

sider that the arm reward can be any smooth non-parametric function. Under this approach, the

expected cumulative regret has an exponential dependence on the covariate dimension d, which

is undesirable under high-dimensional settings where d can be extremely large. Such exponen-

tial dependence can be improved by following the parametric approach. Auer (2002) proposes the

UCB algorithm for a linear bandit model, where the arm reward can be approximated by linear

combinations of covariates. Since Auer (2002), other UCB-type algorithms (e.g., Dani et al. 2008,

Rusmevichientong and Tsitsiklis 2010, Abbasi-Yadkori and Szepesvari 2012, Deshpande and Mon-

tanari 2012) and Bayesian-type algorithms (e.g., Agrawal and Goyal 2013, Russo and Van Roy

2014) have been proposed and shown to improve on the expected cumulative regret. Yet, allowing

the adversary and without regulating the sample generating process, the statistical performance
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of the parameter vector estimation in the learning process may suffer. As a result, the expected

cumulative regret bound typically has a sublinear dependence on the sample size dimension T (e.g.,

O(
√
T )) and a polynomial dependence on the covariate dimension d. However, in high-dimensional

settings, where the covariate dimension and the sample size dimension can be exceedingly large,

these algorithms can perform poorly.

By introducing a forced sampling approach to the linear K-armed bandit model, Goldenshluger

and Zeevi (2013) ensure that enough i.i.d. samples are generated in their algorithm and show

that their proposed OLS-Bandit algorithm can achieve O(logT ) dependence on the sample size

dimension T in low-dimensional settings. Following a similar approach, Bastani and Bayati (2020)

consider the high-dimensional setting and adopt the Lasso method to explore the sparsity struc-

ture in estimation. They propose the Lasso-Bandit algorithm, which attains a poly-logarithmic

dependence on the sample size dimension O(log2 T ) and the covariate dimension O(log2 d) in high-

dimensional settings. In this paper, we allow the reward function to follow the generalized linear

model, which contains a wide family of models that includes the linear K-armed bandit model

in Goldenshluger and Zeevi (2013), Bastani and Bayati (2020). We develop a 2sWL procedure to

identify the unbiased MCP estimator and propose a ϵ-decay random sampling method to hurdle

the high-dimensional data challenge. We show that in the data-rich regime, our proposed G-MCP-

Bandit algorithm achieves the optimal cumulative regret bound on the sample size dimension

O(logT ) and attains a tight bound in the covariate dimension O(logd) in high-dimensional set-

tings. Recently, there has been a growing interest in the sparse linear bandit model. By adopting

sparse regularization, Bastani and Bayati (2020), Kim and Paik (2019), Ren and Zhou (2020),

Wang et al. (2020), Hao et al. (2020), Ariu et al. (2020) establish ploy-logarithmic dependence

bounds on d. Furthermore, conditioning on the minimum signal strength in the data-rich regime,

Hao et al. (2020), Ariu et al. (2020) also prove nearly optimal regret. Different from these two

papers, we consider the generalized linear model and prove that the G-MCP-Bandit algorithm

attains O(logT ) bound for the data-rich regime. Instead of adopting a greedy algorithm, Wang

et al. (2020) propose a UCB-type algorithm for better numerical performance and use the best

subset selection, which requires a time-consuming combinatorial optimization procedure, to debias

and show that their algorithm reaches Õ(poly-log(d)
√
T ). By applying the matrix sketching tech-

niques (e.g., random projection and frequent directions), Yu et al. (2017), Carpentier and Munos

(2012), Kuzborskij et al. (2018) also break the polynomial dependence on d but may lead to a

linear regret on T due to the sketching distortion.

Our research is also related to the regret analysis for bandit problems that go beyond the clas-

sical linear model framework. Filippi et al. (2010) analyze the K-armed bandit problem under the

generalized linear model framework in low-dimensional settings. They point out that the confidence
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regions under the generalized linear model pose more complicated geometry in the parameter space

than simple ellipsoids and highlight the technical difficulties in generalizing the linear bandit model

to the generalized linear framework. They propose a UCB-based bandit algorithm, GLM-UCB,

which attains a regret upper bound of O(d
√
T ). Li et al. (2017) further propose a UCB-GLM

algorithm and SupCB-GLM algorithm in low-dimensional settings, where the second algorithm

improves the regret bound to O(
√
dT ). Compared to this stream of literature that uses the gener-

alized linear model framework, our paper considers the high-dimensional settings and attains the

O(logd logT ) bound. In addition, some results of EXP-type algorithms can also be applied to the

generalized linear model. Yet, these algorithms (e.g., Auer et al. 2002, Beygelzimer et al. 2011,

Agarwal et al. 2014) typically obtain an O(
√
dT ) bound and can be expensive to run.

Our research is also connected to the statistical learning literature. In high-dimensional statis-

tics, Lasso type methods (Tibshirani 1996) have become the golden standard for high-dimensional

learning (Meinshausen et al. 2006, 2009, Zhang et al. 2008, Van de Geer et al. 2008). Yet, Lasso-

type regularizations may lead to estimation bias, and strong conditions are needed for analyzing its

theoretical performance guarantee (Fan et al. 2014a). Recently, Zhang (2010) proposed Minimax

Concave Penalty (MCP), a folded concave penalty function, which entails better statistical proper-

ties, such as the unbiasedness and a strong oracle property for high-dimensional sparse estimation,

and requires weaker conditions than Lasso (Zou 2006, Fan et al. 2014b, Meinshausen et al. 2006).

Although it is statistically favorable to adopt MCP, solving the MCP estimator (an NP-complete

problem) could be computationally challenging (Liu et al. 2017, 2016). Various approximation

methods have been developed in the literature. For example, Fan and Li (2001) use the local

quadratic approximation, Fan et al. (2014b, 2018), Zou (2006), Zhao et al. (2014) adopt the local

linear approximation, Zhang (2010) choose the path following algorithm, and Liu et al. (2017)

propose the second-order approximation. Liu et al. (2022) further extend the second-order approx-

imation to neural network settings. Our proposed solution procedure (the 2sWL procedure) is

analogous to the local linear approximation and guarantees that the solution has desirable statisti-

cal properties for theoretical analysis and can be efficiently solved. In the literature, the theoretical

analysis of MCP’s statistical properties relies on the assumption that all samples are i.i.d., which

is hardly the case under bandit models. This paper also contributes to the statistical learning

literature by deriving new oracle inequalities for MCP under non-i.i.d. samples.

3. Model Settings

We consider a sequential stochastic arrival process for t∈ {1,2, ..., T}. At each time step t, a single

user, described by a high-dimensional feature covariate vector Xt ∈ Rd where d is the number of

features, arrives, and the covariate vector is observable to decision-makers. The covariate vector
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combines all available (but not necessarily valuable for decision-makers to base their decision on)

user-specific data, such as demographics, geographic information, browsing/shopping history, and

medical records. Users’ covariate vectors {Xt}t≥1 are i.i.d. distributed according to an unknown

distribution PX .

Based on the user’s covariate vector Xt, decision-makers will select a decision from a decision

set K= {1,2, ...,K}, where K ≥ 2, to maximize their expected reward. The user will respond to the

chosen decision k ∈K, and such a response will generate a reward for decision-makers. Take search

advertising, for example. The search engine can recommend one of K different ads to the user;

the user can respond to the recommended ad by clicking, which generates revenue for the search

engine. We denote this reward under the chosen decision k at time t as Rk,t ∈R, which follows the

generalized linear model (McCullagh and Nelder 1989):

Rk,t = µ(X⊤
t β

true
k )+ ϵt, (1)

where Xt is the user’s covariate vector at time t, βtrue
k ∈ Rd is the unknown time-independent

(i.e., βtrue
k is independent on t) parameter vector corresponding to decision k ∈ K, ϵt ∈ R is an

independent sub-gaussian random variable, and µ :R→R is a link function.

The generalized linear model covers a large class of models, including the linear model and the

logistic model. For example, by setting the link function µ(X⊤β) = X⊤β, we have the classic

linear multi-armed bandit model, which has been extensively studied by Dani et al. (2008) and

Goldenshluger and Zeevi (2013), among others, under low-dimensional settings and by Bastani

and Bayati (2020) under high-dimensional settings. Furthermore, the generalized linear model

facilitates us to go beyond the classic linear bandit model, as the reward may take a nonlinear

form in practice. For instance, the search engine collects revenue only when a user has clicked

the recommended ad; otherwise, the search engine earns nothing – a nonlinear logistic model by

nature and belongs to the class of the generalized linear model. It is also worth noting that the

generalized linear model facilitates a separation between the link function and the sub-gaussian

random variable. Therefore, all our analysis and results do not require any detailed knowledge of

the reward density function (similar to Bastani and Bayati 2020) and merely need to access the link

function (e.g., µ(X⊤β) =X⊤β for the linear bandit model and µ(X⊤β) = (1+exp(−X⊤β))−1 for

the logistic model).

The parameter vector βtrue
k is high-dimensional with latent sparse structure, and we denote

Sk = {j : βtrue
k,j ̸= 0} as the index set for significant covariates of decision k, where βtrue

k,j denotes

the j-th element in βtrue
k . Note that Sk contains non-zero coefficient parameters and therefore is

important for decision-makers to predict the user’s response. This index set is also unknown to
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decision-makers. We denote s=maxk∈K |Sk|, where |Sk| is the cardinality of Sk (i.e., the number

of significant covariates), and is typically much smaller than the dimension of the covariate vector.

The decision-makers’ objective is to maximize their expected cumulative reward. Denote decision-

makers’ current policy as π= {πt}t≥1, where πt ∈K is the decision prescribed by policy π at time

t. To benchmark the performance of policy π, we first introduce an oracle policy π∗ = {π∗
t }t≥1

under which decision-makers know the values of the true parameter vector βtrue
k for all k ∈K and

chooses the best decision to maximize their expected reward for all t≥ 1:

π∗
t

.
= argmax

k∈K

{
Eϵt [Rk,t|X⊤

t β
true
k ]

}
, (2)

where Eϵt [Rk,t|X⊤
t β

true
k ] = µ(X⊤

t β
true
k ), following the definition in (1), and the π∗

t is the optimal

decision that maximizes the expected reward given the true parameter vectors βtrue
k for all k ∈K

and the covariate vector for the t-th user Xt.

Note that in practice, the parameter vector βtrue
k , for k ∈ K, is unknown to decision-makers,

and therefore the construction and definition of the oracle policy directly imply that decision-

makers’ reward under policy π is upper-bounded by that of the oracle policy. We, therefore, define

decision-makers’ expected cumulative regret up to time T under the policy π, RC(T ), as follows:

RC(T )
.
=

T∑
t=1

EXt,ϵt [Rπ∗
t ,t

−Rπt,t],

where Rπt,t and Rπ∗
t ,t

are the rewards at time t under policy π and π∗, respectively. The expected

cumulative regret is defined as the expected cumulative reward difference between the optimal

policy π∗ and decision-makers’ alternative policy π. To maximize their expected cumulative reward,

decision-makers are equivalent to exploring the policy π that minimizes the cumulative regret up

to time T .

As the true model parameter vector βtrue
k , for k ∈ K, is unknown to decision-makers, we will

use the maximum likelihood estimation (MLE) to learn the model parameters. Given observed

X1, ...,Xn and corresponding rewards R1, ...,Rn, we define the negative log-likelihood loss function

L(β) as follows:

L(β) .
=

1

n

n∑
i=1

f(Ri|X⊤
i β),

where f(Ri|X⊤
i β) is the sample-wise loss function, n is the sample size. For example, given the

observed covariate vector xi and the corresponding reward ri, f(ri|x⊤
i β) =

1
2
∥x⊤

i β−ri∥2 for the lin-

ear bandit model and f(ri|x⊤
i β) =−1(ri = 1) log(exp(x⊤

i β)/(1+exp(x⊤
i β)))−1(ri = 0) log(1/(1+

exp(x⊤
i β))) for the logistic model with binary ri ∈ {0,1}.
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Before presenting the proposed G-MCP-Bandit algorithm, we will first state five technical

assumptions necessary for the theoretical analysis of decision-makers’ expected cumulative regret.

The first three assumptions are adopted directly from the multi-armed bandit literature, and the

last two assumptions are from the high-dimensional statistics literature. Note that both ϵt and Xt

are i.i.d. with respect to t, so we omit the subscript t in Eϵt and EXt hereafter for brevity.

A. 1 (Parameter set) There exist positive constants xmax, Rmax, and b such that for any t ≥ 1

and k ∈K, we have ∥xt∥∞ ≤ xmax, ∥β∥∞ ≤ b for all feasible β, and Eϵ[Rk,t|x⊤
t β

true
k ] = µ(x⊤

t β
true
k )∈

(0,Rmax] for all realization xt of Xt.

The first assumption is a standard assumption in the bandit literature (Rusmevichientong and

Tsitsiklis 2010) and ensures that the covariate vector, the estimated/true coefficient vector, and the

expected reward are bounded so that the maximum regret at every time step will also be bounded

to avoid trivial decisions. Most real-world applications, including the real-data experiment in §6.2,

satisfy this assumption.

A. 2 (Margin condition) There exists a C > 0 such that P(|Eϵ[Ri,t|X⊤
t β

true
i ]−Eϵ[Rj,t|X⊤

t β
true
j ]| ≤

γ)≤CRmaxγ for all γ > 0, t≥ 1, i ̸= j, and i, j ∈K.

The second assumption is first introduced in the classification literature by Tsybakov et al.

(2004). Goldenshluger and Zeevi (2013) and Bastani and Bayati (2020) adopt this assumption to

the linear bandit model, under which the Margin condition ensures only a fraction of covariates can

be drawn near the boundary hyperplane X⊤
t (β

true
i −βtrue

j ) = 0 in which rewards for both arms are

nearly equal for all i ̸= j. Clearly, if a large proportion of covariates are drawn from the vicinity of

the boundary hyperplane, then for any bandit algorithm, a small estimation error in the decision

parameter vectors may lead decision-makers to choose the suboptimal decision and perform poorly

(Bastani and Bayati 2020). Therefore, this margin condition ensures that given a user’s covariate

vector, decisions can be properly separated and ordered based on rewards.

A. 3 (Arm optimality) There exists a partition Ks and Ko for decision set K such that for some

h > 0, (a) if k1 ∈ Ks, then Eϵ[Rk1,t|x⊤
t β

true
k1

] + h <maxk ̸=k1,k∈KEϵ[Rk,t|x⊤
t β

true
k ] for all realization

xt of Xt, t ≥ 1; and (b) if k2 ∈ Ko, then there exists a positive constant p∗ such that for t ≥ 1,

mink2∈Ko P(Xt ∈Uk2)≥ p∗, where Uk2=̇
{
x :Eϵ[Rk2,t|x⊤βtrue

k2
]>maxk ̸=k2,k∈KEϵ[Rk,t|x⊤βtrue

k ] +h
}
.

The arm optimality condition (Goldenshluger and Zeevi 2013, Bastani and Bayati 2020) ensures

that as the sample size increases, the parameter vectors for optimal decisions can eventually be

learned. In particular, this condition separates decisions into an optimal decision subset Ko and a

suboptimal decision subset Ks. Decision i in Ko is strictly optimal for some users’ covariate vectors

(denoted by set Ui); yet, decision j in Ks must be strictly suboptimal for all users’ covariate vectors.

Therefore, even if there is a small estimation error for decision i in Ko, decision-makers will be

more likely to choose decision i for a user with a covariate vector drawn from the set Ui.
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These first three assumptions are directly adopted from the multi-armed bandit literature and

have been shown to be satisfied for all discrete distributions with finite support and a very large class

of continuous distributions (see Bastani and Bayati 2020 for detailed examples and discussions).

A. 4 (Sample-wise loss function) Let r ∈ [0,Rmax] and |y| ≤ xmaxb. We assume (i) f(r|y) is convex

and has smooth gradient in y, and (ii) there exists positive constants σ and σ2 such that |f ′
y(r|y)| ≤ σ

and f
′′
yy(r|y)≤ σ2, where f

′
y(r|y) and f

′′
yy(r|y) are the first and second order partial derivatives of

f(r|y) with respect to the second augment y. Moreover, f
′
y(Rk,t|x⊤

t β
true
k ) is a zero mean σ2-sub-

gaussian random variable for all k ∈K, t≥ 1, and any realization xt of Xt.

The sample-wise loss function assumption enables us to use the estimated parameters to statis-

tically infer the true parameters. It is a fairly weak technical assumption and shares the same spirit

as the log-concavity assumption widely discussed in the literature (Bagnoli and Bergstrom 2005,

Boyd et al. 2004). For example, in the linear bandit model, f
′
y(r|y) = y− r and f

′′
yy(r|y) = 1; in the

logistic model, f
′
y(r|y) =−1(r= 1)+ exp(y)/(1+ exp(y)) and f ′′

yy(r|y) = exp(y)/(1+ exp(y))2.

A. 5 (Restricted eigenvalue condition) There exists a κ > 0 such that for all feasible β satisfying

∥β∥1 ≤ b and u ∈Rd with ∥u(Sk)c∥1 ≤ 3∥uSk∥1, we have κ
s
∥uSk∥21 ≤ uT

Eϵ,X [f
′′
yy(R|X⊤β)XX⊤]u

for k ∈Ks and κ
s
∥uSk∥21 ≤uT

Eϵ,X|X∈Uk
[f

′′
yy(R|X⊤β)XX⊤]u for k ∈Ko.

The restricted eigenvalue condition assumption is a standard assumption in high-dimensional

statistics and is necessary for the identifiability and consistency of high-dimensional estimators

(Fan et al. 2018, 2014b). This assumption considers the local geometry of the standard loss function

for the generalized linear model (e.g., Negahban et al. 2009, Li et al. 2017, Oh et al. 2021) with i.i.d.

samples in Uk. To intuit, note that under low-dimensional settings, the literature (Montgomery

et al. 2012) requires that L(β) is strongly convex around the true parameter vector βtrue (e.g., the

Hessian matrix in OLS estimator is positive-definite and invertible) in order to achieve identifia-

bility of the parameter vector. However, the strong convexity assumption is typically violated in

high-dimensional settings, as the sample size can be much smaller than the covariate dimension.

Therefore, a weaker condition is adopted: The L(β) exhibits local strongly convex behavior only in

some restricted subspace of u. In high-dimensional linear models, the restricted eigenvalue condi-

tion assumption is analogous to the compatibility condition (Bastani and Bayati 2020, Bühlmann

and Van De Geer 2011), restrict strongly convexity condition (Negahban et al. 2009, Loh and

Wainwright 2013), and sparse eigenvalue condition (Zhang et al. 2012, Fan et al. 2018).

It is worth-noting that most common sub-Gaussian distributions satisfies the restricted eigen-

value condition assumption. Specifically, in the linear model case, where f ′′
yy(R|X⊤β) = 1, the

restricted eigenvalue condition reduces to Assumption 4 in Bastani and Bayati (2020) so that

common distributions (e.g., Bernoulli distribution, uniform distribution, truncated Gaussian dis-

tribution, etc.) or discrete distribution with finite support will satisfy this assumption (see the end
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of §3 in Bastani and Bayati 2020 for detailed discussions). When going beyond the linear model,

one sufficient condition, to ensure that the restricted eigenvalue condition continues to hold under

the distributions mentioned earlier, is that the second derivative of the sample-wise loss function is

positive (i.e., f ′′
yy(R|X⊤β)> 0). One example that satisfies this sufficient condition is the logistic

regression where we have f ′′
yy(R|X⊤β) = exp(−X⊤β)

(1+exp(−X⊤β))2
≥ exp(xmaxb)

(1+exp(xmaxb)2
> 0.

Finally, we will follow Bastani and Bayati (2020) to present specific examples that satisfy all five

assumptions. In the first example, we start with a modified version of the “Discrete Covariates”

example in Bastani and Bayati (2020): Let the underlying true parameter vectors for covariates

to be arbitrarily set to be βtrue
1 = (1,0,0,0, ...), βtrue

2 = (0,1,0,0, ...), and βtrue
3 (1/4,1/4,0,0, ...); for

each incoming user, we randomly draw a covariate vector from the d-dimensional unit cube [0,1]d;

rewards of arm i are sampled from Bernoulli distributions with success probability
exp(X⊤βtrue

i )

1+exp(X⊤βtrue
i )

for user X. As discussed by the end of §3 in Bastani and Bayati (2020), Assumptions A.1 - A.3

are satisfied; as the logistic regression function (associated with the MLE of Bernoulli distribution)

is strongly convex in the bounded domain, Assumption A.4 is satisfied; based on the previous

analysis of the restricted eigenvalue conditions, Assumption A.5 is also satisfied. In the second

example, following the “Generic Example” in Bastani and Bayati (2020), we describe the corre-

sponding generic example that satisfies all assumptions in our paper: The problem is in a bounded

domain, and both continuous and discrete values are allowed (Assumption A.1) with strongly

convex loss functions (Assumption A.4); for a given user’s covariate, the rewards of different arms

are likely to be properly separated (Assumption A.2); each arm is either optimal for some users or

strictly suboptimal for all users (Assumption A.3). Therefore, in practical applications, the afore-

mentioned distributions (e.g., Bernoulli, uniform, and truncated Gaussian distributions) together

with commonly used loss functions (e.g., the least squares and the logistic regressions) will satisfy

all five assumptions.

4. G-MCP-Bandit Algorithm

One of the major challenges for online learning and decision-making problems is discovering the

underlying sparse data structure and estimating the parameter vector for high-dimensional data

with limited samples. Lasso (Tibshirani 1996) has been proposed as an efficient statistical learning

method and adopted in the multi-armed bandit literature (Bastani and Bayati 2020) to hurdle

this challenge. However, the standard single-step Lasso estimator can be biased and performs

inadequately, especially when the magnitude of true parameters is not too small (Fan and Li 2001).

One way to address this bias issue is to use multi-step variants of the Lasso (e.g., adaptive Lasso in

Zou 2006 or relaxed Lasso in Meinshausen 2007), and in this paper, we propose a new multi-step

Lasso-based method that builds on the novel convex MCP penalty function (Zhang 2010) and

solved by a 2-step weighted Lasso procedure.
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4.1. Parameter Vector Estimation

For notation convenience, we will omit parameters’ subscripts corresponding to the choice of arms

and time index (i.e., omit the subscript k and t), as long as doing so will not cause any misinterpre-

tation. Consider an oracle estimator for an arbitrary arm, βoracle, which is the parameter estimator

when decision-makers have perfect knowledge of the index set for significant covariates S. In other

words, the oracle estimator can be determined by setting βj = 0 for j ∈ Sc and solving

βoracle(X̄,R)
.
= arg min

βSc=0
βS

L(β), (3)

where X̄ = [X1,X2, ...,Xn] ∈ Rd×n is the matrix contains n row user covariates and R =

[R1,R2, ...,Rn]∈Rn stores the corresponding rewards.

When solving for the oracle estimator, decision-makers can ignore all insignificant covariates by

forcing their corresponding coefficients to be zero and essentially reduce the high-dimensional prob-

lem to a low-dimensional counterpart. In the classical statistical analysis, the literature primarily

focuses on analyzing the statistical behavior of the problem (3) when all samples are i.i.d. drawn

from a given distribution. In online learning and decision-making settings, however, future samples

could depend on historical data through the parameter estimation of the decision model, whose

process suggests that a large portion of the samples could be non-i.i.d.. Hence, in this paper, we

will use A to denote the sample set that contains only i.i.d. samples out of the whole sample set.

Further, we use n and |A| to represent the sample size of whole samples and the sample size of

i.i.d. samples, respectively. Clearly, n ≥ |A|. Now, we present the result for the oracle estimator

with partial i.i.d. samples in the following lemma.

Lemma 1. Let n be the size of the whole samples, βtrue
k be the underlying true parameters, and

|A| be the size of i.i.d. samples with X ∈Rd for k ∈Ks and X ∈Uk for k ∈Ko. Under assumptions

A.1, A.4, and A.5, when |A| ≥C−1
1 log s, the following inequality for the oracle estimator holds for

any ζ > 0

P

(
∥βoracle −βtrue∥1 ≤

2nsζ

|A|κ

)
≥ 1− δ1(n, |A|, ζ), (4)

where

δ1(n, |A|, ζ) .
= 2s exp

(
− nζ2

2σ2x2
max

)
+exp(−C1|A|) (5)

and C1 =O(s−2), where the detailed expression of C1 is given in (EC.125) in the Appendix.

Lemma 1 considers the scenario in which the sample set is mixed with i.i.d. samples and non-i.i.d.

samples. If we set ζ =O(
√
1/n), then the convergence rate for the oracle estimator is on the order
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O(s
√
n/|A|2). Hence, when the number of i.i.d. samples is on the same order as the total sample

size (i.e., |A|=O(n)), the oracle estimator will match the optimal convergence rate of O(s
√
1/n)

commonly stated in the literature (Fan et al. 2018, Zhao et al. 2018).

However, the significant covariates index set S is typically unknown to decision-makers in prac-

tice, so we are not able to directly apply Eq. (3) to obtain the oracle estimator. In this research, we

propose to use the MCP penalty (Zhang 2010) to recover this latent sparse structure and estimate

the unknown parameter vector. To better understand the rationale behind the MCP penalty, we

start with the following weighted Lasso estimator:

βW(X̄,R,w)
.
= argmin

β

{
L(β)+

d∑
i=1

wi|βi|

}
, (6)

where w = (w1,w2, ...,wd) is a non-negative weights vector chosen by decision-makers. Note that

when we set wi = λ for all i, βW(X̄,R,w) reduces to the Lasso estimator, which can be biased

when the magnitude of true parameters is not too small. To recover the sparse structure and

provide an unbiased parameter estimator, an ideal way to select {wi} is to set wi = λ > 0 for all

i ∈ Sc and wj = 0 for all j ∈ S. By doing so, when the weight λ is large enough, the weighted

Lasso estimator converges to the oracle estimator βoracle(X̄,R). The benefits of the weighted Lasso

method have attracted considerable attention recently, and various mechanisms have been proposed

in the literature aiming to improve the weight selection process (Zou 2006, Huang et al. 2008,

Candes et al. 2008). The MCP method, adopted in our paper, reflects such a process.

In particular, we define the following MCP penalty function:

Pλ,a(x)
.
=

∫ |x|

0

max

(
0, λ− 1

a
t

)
dt, (7)

where a and λ are positive parameters selected by decision-makers. The MCP estimator can be

presented as follows:

βMCP(X̄,R, λ, a)
.
= argmin

β

{
L(β)+

d∑
i=1

Pλ,a(βi)

}
. (8)

Denote the index set for non-zero coefficients solutions in Equation (8) as J .
= {j : βMCP

j ̸= 0}.
If we have |βMCP

j | ≥ aλ for all j ∈ J , then based on the definition of Pλ,a(x), we can verify that

Pλ,a(β
MCP
j ) = 1

2
aλ2 for j ∈J . Similarly, for all j /∈J , we have Pλ,a(β

MCP
j ) = 0. In other words, the

statistical performance of solving the MCP estimator is equivalent to solving the following problem:

minβJ c=0,βJ L(β). Hence, if J = S, then the MCP estimator converges to the oracle estimator.

Solving the MCP estimator can be challenging. Liu et al. (2017) have shown that it is an

NP-complete problem to find the MCP estimator by globally solving Equation (8). In the next

subsection, we propose a local linear approximation method, the 2-step Weighted Lasso (2sWL)

procedure, to tackle this challenge and demonstrate that the estimator solved by the 2sWL proce-

dure will match the oracle estimator βoracle with high probability.
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4.2. 2-Step Weighted Lasso Procedure

The 2sWL procedure consists of two steps. We first solve a Lasso problem by setting all positive

weights in Equation (6) to a given parameter λ. Then, we use the Lasso estimator obtained in the

first step to update the weights vector w by taking the first-order derivatives of the MCP penalty

function, and by applying this updated weight vector, we re-solve the weighted Lasso problem

in Equation (6) to obtain the MCP estimator. Let 1 be the vector filled with 1, and the 2sWL

procedure at time t can be outlined as follows:

2-Step Weighted Lasso (2sWL) Procedure:
Require: input parameters a, λ and dataset {X̄,R}
Step 1: solve the standard Lasso problem

β1 =βW(X̄,R, λ1)

Step 2: update wj =

{
P

′
a,λ(|β1,j|) for β1,j ̸= 0

λ for β1,j = 0

and solve the weighted Lasso Problem
βMCP =βW(X̄,R,w)

Next, we will use the following proposition to show that the MCP estimator identified by the

2sWL procedure can recover the oracle estimator with high probability. We denote a new index set

S1
.
=

{
i : |βtrue

i | ≥
(
24ns

|A|κ
+ a

)
λ, i∈ S

}
, (9)

which is a subset of the index set for significant covariates S. To simplify the notation and pre-

sentation, let’s consider a special case where all samples in the whole sample set are i.i.d. (i.e.,

n= |A|) and postpone the proof of the general case where n≥ |A| to Proposition 3 in §5.1.

Proposition 1. Under assumptions A.1, A.4, and A.5, when n= |A|, if |A|>C−1
1 logd and a>

48s
κ
, then for ζ > 0, the MCP estimator solved by the 2sWL procedure βMCP satisfies the following

inequality

P

(
∥βMCP −βtrue∥1 ≤

16sζ

κ
+

16sρMCP
S/S1

κ
λ

)
≥ 1− δ1(n,n, ζ)− δ2(n,n,λ), (10)

where

δ2(n, |A|, λ) = 4d exp

(
− nλ2

2σ2x2
max

·
(
1

2
− 18ns

|A|κa

)2
)
, (11)

ρMCP
S/S1

=
∥βMCP

S/S1
−βtrue

S/S1
∥1

∥βMCP
S −βtrue

S ∥1
∈ [0,1] , (12)

C1 is the same as defined in Lemma 1, S/S1 = {i : i∈ S and i /∈ S1}, and ρMCP
S/S1

= 0 if S/S1 is a

empty set.

Note that in step 1 of the 2sWL procedure, we solve the Lasso problem, and according to the

Lemma EC.2 in the E-Companion, the estimator β1 will converge to βtrue at a rate of 24sλ
κ

with
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high probability. Therefore, if |βtrue
i | ≥ ( 24s

κ
+ a)λ, then we immediately have |β1,i| ≥ aλ, leading

to wi = P ′
a,λ(|β1,i|) = 0, which means that the step 2 of the 2sWL procedure will not penalize the

coefficient for dimension i and, therefore, remove the bias issue in the l1 penalty. In addition, we

quantify the influence of the S1 set on the convergence rate by the ρMCP
S/S1

term. Because S1 is a

subset of S, the ρMCP
S/S1

term decreases as the S1 set contains more elements, which improves the

convergence performance of the MCP estimator solved by the 2sWL procedure.

Compared to the oracle estimator βoracle in Lemma 1, the probability bound on the MCP esti-

mator under the 2sWL procedure has an extra term δ2(n,n,λ), which depends on the covariate

dimension d and the i.i.d. sample size n. Note that as the sample size increases, the extra term

decreases to 0 at an exponential rate. In other words, as the sample size increases, βMCP and the

oracle solution enjoy the same order of the optimal convergence rate with high probability.

Remark 1. Proposition 1 also suggests that as long as the S1 set is non-empty, then the MCP

estimator solved by the 2sWL procedure enjoys better convergence properties than the Lasso

estimator. In particular, by setting ζ = 1
2
λ, we can show that βMCP has

8+16ρMCP
S/S1

κ
sλ convergence

rate. In Lemma EC.2 in the E-Companion, we show that the Lasso estimator has 24
κ
sλ convergence

rate. In fact, since the Lasso problem is corresponding to the case with wi = λ in the 2sWL

procedure, we can view it as a special case of the MCP estimator for S1 = ∅, under which ρMCP
S/S1

= 1

and both estimators have the same convergence. Therefore, as long as not all βtrue
i for i∈ {1,2, ..., d}

are very small, then we will have S1 ̸= ∅, which means ρMCP
S/S1

< 1, so that the MCP estimator

has better convergence property than the Lasso estimator. In practice, it is common to set λ =

O
(√

logn+logd
n

)
, so when the sample size n is large enough, S1 will be nonempty (i.e., ρMCP

S/S1
< 1).

It is worth mentioning that if the set S1 includes all significant covariates (i.e., S1 = S), the term

ρMCP
S/S1

will be 0 and the MCP estimator will attain the same order of the convergence rate as the

oracle estimator. The following corollary states the MCP estimator’s oracle property1.

Corollary 1. Let assumptions in Proposition 1 hold, if S1 = S, then both βMCP and βoracle

converge to βture on the order of O(sζ) with probability 1− δ1(n,n, ζ)− δ2(n,n,λ), where δ1(n,n, ζ)

and δ2(n,n,λ) are defined in (5) and (11) respectively.

4.3. ϵ-decay Random Sampling Method

As bandit models involve exploitation and exploration, samples generated under exploitation typ-

ically are non-i.i.d.. These non-i.i.d. samples pose analytical challenges to the existing MCP lit-

erature that relies on the assumption that all samples are i.i.d. to establish the convergence rate.

Hence, to ensure desired performance of the MCP estimator, we need to secure that at least some

1 In §5.3, we will show that under the G-MCP-Bandit Algorithm described in §4.4, the condition S1 = S will be
satisfied for a large T value.
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samples generated in the online learning and decision-making process are i.i.d. (see §5.1 for detailed

reasons). In this research, we propose a ϵ-decay random sampling method, in which decision-makers

draw random samples, with decreasing probability, by randomly selecting decisions from the deci-

sion set with equal probability. In particular, the ϵ-decay random sampling method can be described

as follows:

ϵ-decay Random Sampling Method : At time t, with probability min{1, t0/t}, where t0 is a pre-

determined positive constant, decision-makers will randomly select a decision from their decision set

with equal probability. Otherwise, decision-makers will follow a bi-level decision structure, which

will be specified later, to determine the optimal decision to maximize their expected reward.

The ϵ-decay random sampling method can balance the exploitation and exploration trade-off

by ensuring that decision-makers do not explore too much to significantly sacrifice their revenue

performance (as the probability of drawing a random sample decays in time) but will secure

sufficient random samples to guarantee the quality of the parameter vector estimation. In particular,

we can bound the random sample size in the following proposition.

Proposition 2. Let C0 ≥ 20, t0 = 2C0|K|, and T > t0. Under the ϵ-decay random sampling

method, the random sample size nk for arm k ∈K up to time T is bounded by

C0(1+ log(T +1)− log(t0 +1))≤ nk ≤ 3C0(1+ log(T )− log(t0))

with probability at least 1− δ0(T, t0), where

δ0(T, t0) =
2(t0 +1)

e4(T +1)4
. (13)

4.4. G-MCP-Bandit Algorithm

After establishing the MCP estimator’s statistical property and the ϵ-decay random sampling

method, we are ready to present the proposed G-MCP-Bandit algorithm. The execution of the

G-MCP-Bandit algorithm can be summarized as follows:
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G-MCP-Bandit Algorithm
Require: Input parameters t0, h, a,λ1, λ2,0.

Initialize βrandom
k =βwhole

k = 0, and Rk and Wk being empty sets for all k ∈K.
For t= 1,2, .... do

Observe xt.
Draw a binary random variable Dt, where Dt = 1 with probability min{1, t0/t}.
If Dt = 1

Assign πt a random decision k ∈K with probability P(πt = k) = 1/|K|.
Play decision πt and observe rt.
Update Rπt =Rπt ∪{(xt, rt)} and Wπt =Wπt ∪{(xt, rt)}.

Else
Construct the optimal decision set:
Πt =

{
i :Eϵ[Ri|x⊤

t β
random
i ]≥maxj∈KEϵ[Rj|x⊤

t β
random
j ]− 1

2
h, i∈K

}
.

Set πt = argmaxk∈ΠtEϵ[Rk|x⊤
t β

whole
k ].

Play decision πt, observe rt, and update Wπt =Wπk
∪{(xt, rt)}.

End If

For k ∈K, set λ2,t = λ2,0

√
log t+logd

t
, update βrandom

k and βwhole
k via the 2sWL

procedure with (a,λ1,Rπt) and (a,λ2,t,Wπt), respectively.
End for

Specifically, decision-makers will start by assigning values for system parameters (t0, h, a,λ1, and

λ2,0), which can be optimized through tuning, and initialing parameter vector estimators (βrandom
k

and βwhole
k ) and sample datasets (Rk and Wk, which represent the random sample set and the

whole sample set) for all arm k ∈ K. Then, for an incoming user at time t, decision-makers will

draw a binary random variable Dt with probability min{1, t0/t}. There are two possibilities:

• If Dt = 1, then they will randomly choose a decision k from their decision set K with equal

probability of 1/|K|; then, they will implement the chosen decision (i.e., πt = k), observe the

user’s response, and claim the corresponding reward; finally, decision-makers will include the user’s

covariate vector and the corresponding reward {(xt, rt)} in both sample datasets, Rπt and Wπt .

• If Dt = 0, then they will use a bi-level decision structure to determine their decision. In the

upper-level decision-making process, decision-makers will first construct an optimal decision set

Πt. Specifically, all decisions in the optimal decision set Πt are estimated, based on the random

sample MCP estimator βrandom, to yield expected rewards within h/2 of the maximum possible

reward. If there is only one decision in the optimal decision set Πt, then decision-makers will

implement this decision as the optimal decision; otherwise, decision-makers will perform the lower-

level decision-making process, in which decision-makers will estimate, by using the whole sample

MCP estimator βwhole, the rewards for all decisions in the optimal decision set Πt and select

the decision that generates the highest expected reward. Then, observing the user’s response and

collecting the corresponding reward, decision-makers will only update the whole sample dataset

Wπt by appending the user’s covariate vector and the corresponding reward {(xt, rt)}.
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Finally, decision-makers will update parameter λ2,t, and then use the 2sWL procedure to update

the random sample parameter vector estimator βrandom and the whole sample parameter vector

estimator βwhole, based on sample data sets Rπt and Wπt , respectively.

The expected cumulative regret upper bound for the G-MCP-Bandit algorithm can be established

in the following theorem.

Theorem 1. Under assumptions A.1-A.5, let t0 = 2C0|K|, a > 1152s
p∗κ , λ1 = O(s−1), and λ2,0 =

O(1), where detailed expressions of λ1 and λ2,0 are given in (EC.36) and (EC.62), respectively.

The cumulative regret upper bounds for the G-MCP-Bandit algorithm up to time T are given as

follows:

RC(T )≤

{
Rmax|K|

[
(3C0 +C3) logT +(7+2C4)T0 +C5 log

2 T
]
= Õ(s2(logd+ logT ) logT ), T < T1

Rmax|K|
[
(3C0 +C3 +C5) logT +(7+2C4)T0 +C5 log

2 T1

]
= Õ(s2 logd logT ), T ≥ T1

where T0 = Õ(s2 logd) by (EC.60) and (EC.78), T1 = Õ(β−2
min · s2 logd), C0 = O(s2 logd), C3 ≤

Õ((1 + ρmax)
2s2 logd), C4 = O(1), and C5 = Õ(s2) are defined in (EC.61), (EC.35), (EC.112),

(EC.114), and (EC.115), respectively,

ρmax = max
T0≤t≤T1,k∈Ko

ρwhole
Sk/Sk

1,t
(14)

βmin = min
i∈Sk,k∈K

|βtrue
k,i |, (15)

Sk
1,t is the index set S1 of arm k at time t, ρwhole

Sk/Sk
1,t

defined in (12), and we use Õ(·) to suppress the

logarithmic dependence on s.

Theorem 1 shows that the expected cumulative regret of the G-MCP-Bandit algorithm over

T users is upper-bounded by O(logT ) in the data-rich regime (i.e., T ≥ T1). Goldenshluger and

Zeevi (2013) have shown that under low-dimensional settings, the expected cumulative regret for a

linear bandit model is lower-bounded by O(logT ), which is directly applicable to high-dimensional

settings. Further, note that the linear model is a special case of the generalized linear model.

Therefore, the expected cumulative regret of the G-MCP-Bandit algorithm is also lower-bounded by

O(logT ). In other words, the G-MCP-Bandit algorithm achieves the optimal expected cumulative

regret in the sample size dimension.

The optimal O(logT ) order represents an improvement from Lasso-Bandit’s O(log2 T ) regret

upper bound. To explain this improvement, first note that by design, at each time step, the G-MCP-

Bandit algorithm will update the penalty term for the MCP estimator λ2,t to be λ2,0

√
log t+logd

t
.

Such a decrease of the penalty term helps round down significant covariates with small coefficients

to infer the true support of βtrue. As time increases, λ2,t will eventually decay below a threshold that

is proportional to the βmin value so that the S1 set in Proposition 1 becomes {i : |βtrue
i | ≥ βmin}= S
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for all arms, which happens in the data-rich regime (i.e., T ≥ T1). Therefore, in the data-rich regime,

the MCP estimator will enjoy the same order of the convergence rate as the oracle solution (see

Corollary 1) and will be independent on λ2,t.

In addition, in the data-rich regime, Theorem 1 also demonstrates that the cumulative regret

of the G-MCP-Bandit algorithm in the high-dimensional covariate vector d is upper-bounded by

O(logd). This bound presents a significant improvement over other classic bandit algorithms (Gold-

enshluger and Zeevi 2013, Abbasi-Yadkori and Szepesvari 2012, Dani et al. 2008), which yield

polynomial dependence on d, and is also a tighter bound than the Lasso-type algorithm (i.e.,

O(log2 d) in Bastani and Bayati 2020). It is worth noting that compared to Lasso-Bandit, the G-

MCP-Bandit algorithm improves the regret bound from O(s2(logd+ logT )2) to O(s2 logd logT ).

This improvement is of particular importance in high-dimensional settings, where the covariate

dimension can be extremely large, and it suggests that the G-MCP-Bandit algorithm can bring

substantial regret reduction compared to existing bandit algorithms (e.g., see §6).

In the data-poor regime (i.e., T < T1), the regret upper bound of the G-MCP-Bandit algorithm

on T will worsen to O(s2(logd+logT ) logT ), which has better dependence on d but shares the same

order on T as Lasso-Bandit. Yet, note that C3 depends on ρmax = max
T0≤t≤T1,k∈Ko

ρwhole
Sk/Sk

1,t
, and recall

that Remark 1 demonstrates that for non-empty index Sk
1,t, we have ρMCP

Sk/Sk
1,t

< 1, which suggests

that the G-MCP-Bandit algorithm has a tighter bound on T than Lasso-bandit in the constant C3

and performs better under the data-poor regime as well.

Remark 2. The value of T1 depends on the magnitude of the signal for significant covariates

βmin. The βmin is often referred to as the minimal signal for the non-zero component of βtrue, and

in the high-dimensional bandit literature (e.g., Hao et al. 2020, Ariu et al. 2020), the βmin value

are often used to generate a time-threshold such that once the sample size T passes such a time-

threshold, the regret upper bound can be improved in the data-rich regime. This is because for a

very small βmin value, it will be prohibitively difficult to distinguish all significant covariates away

from 0, so we will need more samples to correct the bias from the penalized estimation, which

means that the G-MCP-Bandit algorithm has to stay longer in the data-poor regime (i.e., T < T1)

with suboptimal regret of Õ(s2(logd+logT ) logT ). Yet, it is worth noting that the G-MCP-Bandit

algorithm doesn’t require the knowledge of the βmin value as an input parameter, and the regret

upper bound will eventually switch to Õ(s2 logd logT ) automatically in the data-rich regime (i.e.,

T ≥ T1) as more samples are collected.

4.5. Computational Complexity

The average computational cost for the G-MCP-Bandit algorithm can be shown in the following

theorem.
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Theorem 2. Let ϵ > 0 be an optimization tolerance constant. Under assumptions A.1 and A.5,

the average computation cost of the G-MCP-Bandit Algorithm by time T will be upper bounded by

O(xmaxb
3ϵ1/2 · |K|d4T ). Moreover, for a large T , the average computation cost can be improved to

O(xmaxb · |K|d2T ) with high probability.

The G-MCP-Bandit algorithm’s worst-case average computational cost is on the order of

O(xmaxb
3ϵ1/2 · |K|d4T ), when a basic accelerated gradient descent method (e.g., the FISTA method

in Beck and Teboulle 2009) is used as the optimization scheme. The primary computational cost

of the G-MCP-Bandit algorithm is from updating/solving model parameter β via the 2sWL pro-

cedure for each arm at every time step: the |K| dependence is because we require to update every

arm at every time step, xmaxbd part comes from the Lipschitz constant of the loss function L(β),

the remaining b2d2 stems from the distance between the initial solution and the optimal solution,

and the Td part describes the cost of evaluating the full gradient of L(β). The improvement in

the long-run regime is mainly from the warm start in the 2sWL procedure. From Proposition 6

and Lemma EC.2 in E-Companion, if time T is large enough (e.g., T ≥max{T1, Õ(s2ϵ−1/2)}), then

with high probability, βMCP
k differs from βtrue

k at a rate lower than ϵ1/4. Therefore, if we use βMCP
k

as the initial solution in the 2sWL procedure, then it will be very efficient to identify the optimal

solution, which suggests that the average computational cost of the G-MCP-Bandit algorithm can

be improved to O(xmaxb · |K|d2T ).

5. Key Steps of Regret Analysis for the G-MCP-Bandit Algorithm

In this section, we provide abridged technical proofs for Theorem 1, the main theorem in this

paper. Specifically, we briefly lay out four key steps in establishing the expected cumulative regret

upper bound for the G-MCP-Bandit algorithm. In the first step, we highlight the influence of non-

i.i.d. data, inherited from the multi-armed bandit model, and provide the statistical convergence

property for the MCP estimator under partially i.i.d. samples. Applying these results to the G-

MCP-Bandit algorithm, in the second and third steps, we establish the convergence properties for

both the random sample estimator, which is based on only samples that were generated through

the ϵ-decay random sampling method, and the whole sample estimator, which uses all available

samples. Finally, in the last step, we establish the total expected cumulative regret by separating

the regret up to time T into three segments and providing a bound for each segment. The main

structure and sequence of our proving steps described above are first introduced by Bastani and

Bayati (2020), which presents their expected regret analysis for a linear bandit model (i.e., LASSO-

Bandit algorithm) in a similar sequence. We will largely follow their presentation structure, but

with different steps, proving techniques, and convergence properties, to illustrate the key steps in

analyzing the G-MCP-Bandit algorithm.
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5.1. General Non-i.i.d. Sample Estimator

Note that the restricted eigenvalue condition (i.e., assumption A.4) for high-dimensional statistics is

for i.i.d. samples in the literature. Yet, in this research, we consider the G-MCP-Bandit algorithm,

under which only part of the samples are i.i.d., so we first need to show that the restricted eigenvalue

condition continues to hold for partially i.i.d. samples (see Lemma EC.1 in E-Companion). Then,

we can establish general results for the MCP estimator under non-i.i.d. data.

We denote Wk as the whole sample set and βMCP
k as the MCP estimator for the parameter vector

corresponding to decision k ∈K. Similarly, in the following presentation, we will omit parameters’

subscripts corresponding to the choice of arms and time index for brevity, as long as doing so will

not cause any misinterpretation.

Note that as samples in W may be non-i.i.d., standard MCP convergence results (Fan et al.

2014b, 2018) cannot be directly applied. Recall that we proposed the ϵ-decay random sampling

method, in which these samples generated under randomly selected decisions are i.i.d.. Therefore,

there exists a subset A ⊆W such that all samples in this subset are i.i.d. from the distribution

PX . The next step is to show that when the cardinality of A (i.e., |A|) is large enough, βMCP will

converge to the true parameters βtrue.

Proposition 3. Under assumptions A.1, A.4, and A.5, if |A| ≥ C−1
1 logd and a > 48ns

|A|κ , then

for ζ > 0, the following inequality holds for the MCP estimator under the 2sWL procedure βMCP

P

(
∥βMCP −βtrue∥1 ≤

16nsζ

|A|κ
+

16nsρMCP
S/S1

|A|κ
λ

)
≥ 1− δ1(n, |A|, ζ)− δ2(n, |A|, λ), (16)

where C1 =O(s−2), δ1(n, |A|, ζ), and δ2(n, |A|, λ) are defined in (EC.125), (5), and (11), respec-

tively.

Proposition 3 describes the statistical properties of the non-i.i.d. MCP estimators under the

2sWL procedure. If we set ζ to be on the order of O(
√

1/n), then ∥βMCP −βtrue∥1 is on the order

of O(s
√

n/|A|2). In addition, when the i.i.d. sample size |A| matches the whole sample size n,

Equation (16) suggests that the MCP estimator guarantees the optimal statistical convergence at

O(s
√
1/n).

Moreover, Proposition 3 shows the necessity of generating i.i.d. random samples in high-

dimension bandit settings. Non-i.i.d. samples are inevitable in online learning and decision-making

process, so ensuring the desired performance of the parameter vector estimation in high-dimensional

settings can only be achieved through generating a sufficient number of i.i.d. samples, as shown in

Proposition 3. We will show in the next two subsections that at time t, the size of i.i.d. samples

generated under the ϵ-decay random sampling method is on the order of O(log t), which can be

further improved to the order of O(t) under the bi-level decision structure.
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5.2. Estimator from Random Samples up to Time t

In Proposition 3, we show that the MCP estimator will converge to the oracle parameter as long

as the sample set contains a sufficient number of i.i.d. samples. Recall that in our proposed G-

MCP-Bandit algorithm, samples generated by the ϵ-decay random sampling method are i.i.d., and

the size of these i.i.d. samples is on the order of O(logT ) (i.e., see Proposition 2). Combining

these observations, the following proposition establishes the statistical performance of the MCP

estimator based on only random samples generated by the ϵ-decay random sampling method.

Proposition 4. Let t0 = 2C0|K|, t > t0 and a > 1152s/ (p∗κ). If assumptions A.1, A.3, A.4,

and A.5 hold, then the random sample MCP estimator for any arm in K under the G-MCP-Bandit

algorithm βrandom will satisfy the following inequality

P

(
∥βrandom −βtrue∥1 ≤min

{
1

σxmax

,
h

4eσRmaxxmax

})
≥ 1− 5δ0(t, t0),

where δ0(t, t0), C0 = O(s2 logd), and λ1 = O(s−1), whose detailed expressions are given in (13),

(EC.35), and (EC.36), respectively.

5.3. Estimator from Whole Samples up to Time t

In addition to i.i.d. samples generated by the ϵ-decay random sampling method, other samples can

also be used to improve the statistical performance of the MCP estimator. To intuit, recall that

in the G-MCP-Bandit algorithm, when the user is not selected to perform a random sampling,

decision-makers will use the bi-level structure to determine the optimal decision to maximize their

expected reward. In the upper-level decision-making process, only i.i.d. samples will be used (as

βrandom is the MCP estimator based on samples generated only by the ϵ-decay random sampling

method) to determine the candidate(s) for the optimal decision set. From Proposition 4, we know

that this random sample MCP estimator will not be far away from its true parameter values. In

other words, if we define the event that the random sample MCP estimator at time t is within a

given distance from its true parameter as event E2:

E2=̇

{
∥βrandom

k −βtrue
k ∥1 ≤min

{
1

σxmax

,
h

4eσRmaxxmax

}
, k ∈K

}
, (17)

then event E2 will happen with high probability. Further, conditioning on event E2 and assumption

A.3, we can verify that for any x∈Uk, k ∈K, the following inequality holds:

Eϵ(Rk|x⊤βrandom
k )≥max

j ̸=k
Eϵ(Rj|x⊤βrandom

j )+
h

2
. (18)

Therefore, if using Equation (18) as the selecting criterion, decision-makers will be able to choose

the optimal decision k for any x ∈ Uk, k ∈K with high probability. We defer the detailed analysis

to Lemma EC.3 in the E-Companion.
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Formally, we can bound the total number of times under which event Xj ∈ Uk and event E2

happen simultaneously. In particular, we define

Mk(i)=̇Eϵ,X

[
t∑

j=1

1(Xj ∈Uk,E2,Xj /∈Rx,k)|Fi

]
(19)

for i ∈ {0,1,2, .., t}, where Fi = {(Xj,Rj) for j ≤ i} and Rx,k being the set containing the user

covariate X with decision arm k assigned by the ϵ-decay random sampling method. Then, {Mk(i)}

is a martingale with bounded difference |Mk(i) −Mk(i + 1)| ≤ 1 for i = 0,1,2, ..., t, and we can

bound the value of Mk(t) in the following proposition:

Proposition 5. Let t0 = 2C0|K| for some C0, t≥ t0, and a> 1152s/ (p∗κ). If assumptions A.1,

A.3, A.4, and A.5 hold, then P
(
Mk(t)≤ p∗t

8

)
≤ exp

(
− (p∗)2t

256

)
holds for all k ∈ K, where C0 =

O(s2 logd) and λ1 =O(s−1) are defined in (EC.35) and (EC.36), respectively.

Intuitively, Proposition 5 suggests that with high probability, the actual i.i.d. sample size in Uk

for decision k will be on the order of O(t) instead of O(log t). This improvement is the reason

why the whole sample MCP estimator βwhole used in the lower-level decision-making process has

better statistical performance, compared to the random sample MCP estimator βrandom used in

the upper-level decision-making process. Specifically, we can establish the convergence property for

the whole sample MCP estimator in the following proposition.

Proposition 6. Let t0 = 2C0|K|, t > T0, and a > 1152s
p∗κ . If assumptions A.1, A.3, A.4, and A.5

hold, then the whole sample MCP estimator for the arm in the optimal arm set Ko, under the

G-MCP-Bandit algorithm, βwhole will satisfy the following inequality:

P

(
∥βwhole −βtrue∥1 ≤

128sζ

p∗κ
+

128sρMCP
S/S1

p∗κ
λ

)
≥ 1− 5δ0(t, t0)−

10

(t+1)2
− 2s exp

(
− tζ2

2σ2x2
max

)
,

where ζ ≥ 0, and ρMCP
S/S1

, δ0(t, t0), C0 =O(s2 logd), T0 =O(s2 logd), λ1 =O(s−1), and λ2,0 =O(1)

are defined in (12), (13), (EC.35), (EC.60), (EC.36), and (EC.62), respectively. Moreover, let

T1 =O(β−2
mins

2 logd) be set as in (EC.61). Then, when t≥ T1, the above result can be improved to

P

(
∥βwhole −βtrue∥1 ≤

128sζ

p∗κ

)
≥ 1− 5δ0(t, t0)−

10

(t+1)2
− 2s exp

(
− tζ2

2σ2x2
max

)
.

5.4. Cumulative Regret Up To Time T

Finally, to bound the cumulative regret for the G-MCP-Bandit algorithm, we need to divide the

time, up to time T , into three groups and provide an upper bound for each group.

The first group of time contains the time before time T0 and the time up to time T when i.i.d.

samples are generated through the ϵ-decay random sampling method. Note that before time T0

(the explicit requirement for T0 is given in the proof of Proposition 6 in E-Companion and on
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the order of Õ(s2 logd)), decision-makers does not have sufficient samples to accurately estimate

covariate parameter vectors. Hence, the reward under the G-MCP-Bandit algorithm will suffer and

be sub-optimal compared to that of the oracle case. We can bound the cumulative regret by the

worst-case performance by 3C0Rmax|K| logT +5Rmax|K|T0 = Õ(s2 logd logT ), where the first part

of this cumulative regret is for all samples before time T0 and the second part is for all random

samples up to time T .

Next, we will segment the remaining scenarios into two groups, depending on whether we can

accurately estimate covariate parameter vectors by using only random samples collected by the

ϵ-decay method. In particular, the second group includes the remaining scenarios where the random-

sample-based estimators are not accurate (i.e., event E2 doesn’t hold). Under those scenarios,

inevitably, decision-makers’ decisions will be suboptimal with high probability. However, note that

as the size of i.i.d. samples increases in t, the probability of event E2 not occurring decreases. We

can bound the cumulative regret for the second group by 2Rmax|K|T0 = Õ(s2 logd).

The last group includes the remaining scenarios where the random-sample-estimators are accu-

rate enough (i.e., event E2 holds.). Benefiting from the improved estimation accuracy (Proposi-

tion 6), we can bound the cumulative regret for the last group by Rmax|K|(2C4T0 + C3 logT +

C5 log
2 T ) = Õ(s2(logd+logT ) logT ). Further, when t goes beyond T1 ≥ T0, we can prove that the

expected cumulative regret for the last group will be bounded by Rmax|K|(2C4T0+(C3+C5) logT +

C5 log
2 T1) = Õ(s2 logd logT ). Combining the cumulative regret for all three groups, Theorem 1

directly follows.

6. Empirical Experiments

In this section, we will benchmark the G-MCP-Bandit algorithm to OFUL (Abbasi-Yadkori et al.

2011), OLS-Bandit (Goldenshluger and Zeevi 2013), and Lasso-Bandit (Bastani and Bayati 2020).

In particular, we seek answers to the following two questions: How does the performance of the

G-MCP-Bandit algorithm compare to other bandit algorithms? And how is the performance of the

G-MCP-Bandit algorithm influenced by the data availability (T ), the data dimensions (s and d),

and the size of the decision set (K)?

To this end, we start with two synthetic-data-based experiments in §6.1 and then conduct one

real-dataset-based experiment, the Tencent search advertising data, in §6.2. Note that the algo-

rithms and theoretical bounds of OFUL, OLS-Bandit, and Lasso-Bandit are developed under the

assumption that the reward function follows the linear model, which is a special case in the G-

MCP-Bandit algorithm. Therefore, for fair comparisons, we specify the underlying reward function

for the G-MCP-Bandit algorithm to follow the same linear model (i.e., the reward under decision

k for a user with covariate vector Xt takes the form of Rk,t =X⊤
t β

true
k + ϵ, where ϵ is a σ-gaussian
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random variable) in both synthetic experiments. In the Tencent search advertising data experiment,

besides benchmarking the G-MCP-Bandit algorithm to other bandit algorithms, we also explore

the performance of the G-MCP-Bandit algorithm under both the linear model and the logistic

model to examine the impacts of the model choice on decision-makers’ revenue performance.

6.1. Synthetic Data (Linear Model)

In the first synthetic data experiment, we fix the size of the decision set K and focus on the impacts

of the data dimensions, s and d, and the data availability, T , on the algorithms’ cumulative regret

performance. In particular, we consider a two-arm bandit setting (i.e., K = 2). To simulate different

sparsity levels, we vary the covariate dimension d= {10,102,103,104} and keep the dimension for

significant covariates unchanged at s = 5. Therefore, as the covariate dimension d increases, the

data become sparser. The underlying true parameter vectors for covariates are arbitrarily set to be

β1 = (1,2,3,4,5,0,0, ...) for the first arm and β2 = 1.1 ·β1 for the second arm. For each incoming

user, we randomly draw her covariate vector from N(0, Id×d) and the error term in the linear model

ϵ from N(0,1). We truncated the covariate vector and reward between [−10,10]. Finally, we use

the same parameter values for t0, h, λ1, and λ2,0 in both the Lasso-Bandit algorithm and the

G-MCP-Bandit algorithm and select the unique parameter for the G-MCP-Bandit algorithm a at

2. For each algorithm, we perform 100 trials and report the average cumulative regret for OFUL,

OLS-Bandit, Lasso-Bandit, and G-MCP-Bandit (under the linear model) in Figure 1.

Figure 1 Synthetic study 1: The impact of T and d on the cumulative regret, where K = 2 and s= 5.
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(c) T=1000

Overall, we observe that the G-MCP-Bandit algorithm significantly outperforms OFUL, OLS-

Bandit, and Lasso-Bandit and achieves the lowest cumulative regret. Facing only two deci-

sions/arms, decision-makers can easily identify the optimal arm, and therefore OFUL and OLS-

Bandit, both of which are not specifically designed for high-dimensional settings, perform nearly

identically. Lasso-Bandit and G-MCP-Bandit could benefit from their abilities to recover the sparse



26

structure and identify the significant covariates. Therefore, compared to OFUL and OLS-Bandit,

Lasso-Bandit and G-MCP-Bandit can improve their parameter estimations, especially under high-

dimensional settings, and perform substantially better. Further, the improvement of the cumulative

regret performance of G-MCP-Bandit over Lasso-Bandit follows from the facts that the MCP

estimator is unbiased and could improve the sparse structure discovery. Next, we will discuss the

influence of sample size T and the covariate dimension d on these algorithms’ cumulative regret

performance.

Figure 1(a) and 1(b) illustrate the influence of the sample size T on the cumulative regret for

the cases where d = 10 and d = 1000 (other cases exhibit a similar pattern and are therefore

omitted)2. As we have proven that G-MCP-Bandit provides the optimal time dependence under

both low-dimensional and high-dimensional settings (Theorem 1), G-MCP-bandit strictly improves

on the cumulative regret performance from Lasso-Bandit, especially when T is not too small.

Note that facing insufficient samples, all algorithms fail to accurately learn parameter vectors and

therefore perform poorly. As the sample size increases, the G-MCP-bandit algorithm is able to, in

an expeditious fashion, unveil the underlying sparse data structure, accurately estimate parameter

vectors, and outperform all other benchmarks. For example, in Figure 1(b), we observe that the

regret reduction of G-MCP-Bandit over all other algorithms is at least larger than 5% when the

sample size T is larger than 70. This observation echoes our theoretical findings that the G-MCP-

Bandit algorithm attains the optimal regret bound in sample size dimension O(logT ).

We also observe that the benefits of G-MCP-Bandit over the other three algorithms appear to

increase in the data sparsity level. Figure 1(c) presents the influence of the covariate dimension

d on the cumulative regret for the case where T = 1000. Recall that we fixed the dimension for

significant covariates s = 5. Therefore, as the covariate dimension d increases, the data become

sparser (i.e., d/s increases). As expected, the cumulative regret for all four algorithms increases in

the covariate dimension d, but at different rates. On the one hand, both OLS-Bandit and OFUL

lack the ability to recover the sparse data structure and are ill-suited for high-dimensional problems.

On the other hand, Lasso-Bandit and G-MCP-Bandit, which adopt different statistical learning

methods for sparse structure discovery and are designed for high-dimensional problems, have lower

cumulative regret that increases in d at a slower rate. Further, we notice that the G-MCP-Bandit

algorithm has the least increase in cumulative regret among all four algorithms, which confirms

our theoretical finding in Theorem 1: The G-MCP-Bandit algorithm has a better dependence on

2 In all four experiments where d ∈ {10,102,103,104}, we simulated the sample size up to 10,000 and observe that
the G-MCP-Bandit algorithm’s cumulative regret seems to be stabilized before T = 2000. Therefore, we only plot for
the first 2000 samples to avoid duplication.
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the covariate dimension O(logd) than Lasso-Bandit O(log2 d), OFUL, and OLS-Bandit (the last

two algorithms have polynomial bounds in d).

In the second synthetic data experiment, we study the influence of the size of the decision

set by varying K = {2,5,10,20,50,100} and keeping the data dimensions unchanged (s = 5 and

d= 100). For each decision, we randomly draw the parameter vector for the significant covariates

from a uniform distribution, U(0,1). Finally, we keep other parameters the same as in the first

synthetic data experiment. Figure 2 plots the average cumulative regret for OFUL, OLS-Bandit,

Lasso-Bandit, and G-MCP-Bandit (under the linear model).

Figure 2 Synthetic study 2: The impact of T and K on the cumulative regret, where d= 100 and s= 5.
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We observe that the benefits of adopting G-MCP-Bandit over the other three algorithms increase

in the size of the decision set. In particular, as K increases, the cumulative regret gap between

G-MCP-Bandit and any other algorithm grows; see Figure 2(c). This observation is as expected. To

intuit, note that as we add more possible decisions into the decision set, the complexity and difficulty

for decision-makers to select the optimal decision grow for two main reasons. First, decision-makers

will need more samples to identify the significant covariates and estimate the parameter vectors.

Second, as the number of decisions increases, the process of comparing the expected rewards among

all decisions and selecting the optimal decision becomes more vulnerable to estimation errors.

Therefore, we should expect that as the number of arms increases, the number of samples required

for these algorithms to accurately learn the parameter vectors and select the optimal decision will

increase as well.

Figure 2(a) and Figure 2(b) plot the cumulative regret for the case of ten arms and fifty arms,

respectively. Clearly, decision-makers need far more samples before their cumulative regret can be

stabilized in the case of fifty arms than in the case of ten arms. Therefore, the cumulative regret

performance under all algorithms suffers from the increasing size of the decision set. As discussed

earlier, the G-MCP-Bandit algorithm attains the optimal bound in the sample size dimension and
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is able to learn the sparse data structure and provide accurate unbiased estimators for parameter

vectors. Hence, we observe that the benefits of adopting the G-MCP-Bandit algorithm over other

algorithms are amplified as the number of arms increases, as illustrated in Figure 2(c).

Finally, before moving to the real-data-based experiment, it is worth mentioning that we also

conduct a systematic sensitivity analysis to test the robustness of the G-MCP-Bandit algorithm

under different values of input parameters in §EC.3 of the E-Companion. In particular, we find

that when we vary the G-MCP-Bandit algorithm’s input parameters (i.e., a, λ1, λ2,0, h, t0), the

cumulative regret remains largely unchanged, which suggests that the G-MCP-Bandit algorithm

is robust with respect to the choices of its input parameters.

6.2. Tencent Search Advertising Data (Linear & Logistic Models)

Now, we scale up the dataset’s dimensionality by considering a search advertising problem at

Tencent. The Tencent search advertising dataset is collected by Tencent’s proprietary search engine,

soso.com, and it documents the interaction sessions between users and the search engine (Tencent

2012). In the dataset, each session contains a user’s demographic information (age and gender),

the query generated by the user (combinations of keywords), ads information (title, URL address,

and advertiser ID), the user’s response (click or not), etc. This dataset is high-dimensional with

a sparse data structure and contains millions of observations and covariates. To put the size of

the dataset into perspective, it contains 149,639,105 session entries, more than half a million ads,

more than one million unique keywords, and more than 26 million unique queries.

For illustration purposes, we focus on a three-ad experiment3 (with ad IDs 21162526, 3065545,

and 3827183). Each of these three ads has an average CTR higher than 2% and more than 100,000

session entries, which provide a basis for reasonably accurate estimations for parameter vectors.

In total, there are 849,338 session entries with 169,744 unique queries and 8 covariates for users’

demographic information. As the search engine receives payment from advertisers only when the

user has clicked the sponsored ad, we arbitrarily set the awards for clicked ads to be $1, $5, and

$10, respectively.

When the true underlying reward function follows the logistic model4, Figure 3 plots the average

revenue performance under OFUL (under linear model), OLS-Bandit (under linear model), Lasso-

Bandit (under linear model), a random policy, the oracle policy (under the logistic model), and

G-MCP-Bandit (under both linear and logistic models). It is worth noting that the “true” oracle

3 Experiments with more ads are provided in Appendix EC.4.1. With a larger number of ads, our observations and
insights remain qualitatively unchanged. Furthermore, similar to synthetic studies, the benefits of G-MCP-Bandit
over other benchmarks increase in the number of ads.

4 In Appendix EC.4.2, we further consider the case where the true underlying model follows a two-component Gaussian
mixture model, which does not belong to the GLMs family, and the benefits of the G-MCP-Bandit algorithm over
other benchmarks remain qualitatively unchanged.



29

policy is impossible to implement, as the true parameter vectors are unknown, or at least have

considerable variance even when all session entries in the dataset are used for estimation. Therefore,

the oracle policy in the experiment represents the scenario when the search engine has access to all

data to estimate these parameter vectors and make ad selection decisions. In addition, we introduce

the random policy as another benchmark to simulate the scenario in which the search engine will

randomly recommend an ad with equal probability to an incoming user. Finally, note that the

CTR prediction is binary in nature (i.e., click or not). We, therefore, include the G-MCP-Bandit

algorithm under the logistic model and compare it to the G-MCP-Bandit algorithm under the

linear model to study the influence of the underlying model choice. In the experiment, we simulate

incoming users by permuting their covariate vectors randomly. For each algorithm, we perform

100 trials and report the average revenue with 5000 users, which seems to be sufficient for the

G-MCP-Bandit algorithm to converge.

Figure 3 Tencent search advertising experiment: The average revenue under different algorithms.
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We can show that all learning algorithms generate higher average revenue than the random pol-

icy for any number of users and that the G-MCP-Bandit algorithm outperforms other algorithms

under most scenarios. Specifically, when comparing all algorithms under the same linear model,

we observe that the G-MCP-Bandit algorithm (under the linear model) has better average rev-

enue performance than OFUL, OLS-Bandit, and Lasso-Bandit as soon as there are more than 140

users. This observation is consistent with that previous synthetic-data-based experiments and sug-

gests that compared to other benchmarking algorithms, the G-MCP-Bandit algorithm can benefit

from improved parameter vector estimation under high-dimensional data with limited samples and

achieve better revenue performance.

Further, we find that the choice of underlying models can significantly influence the G-MCP-

Bandit algorithm’s average revenue performance. Note that the advertisers award the search engine
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only when users have clicked the recommended ads. Therefore, the search engine’s reward function

is binary in nature. When comparing the G-MCP-Bandit algorithm under the logistic model to

that under the linear model, both of which are special cases of the G-MCP-Bandit algorithm, we

observe that the former always dominates the latter for any number of users. In addition, the

G-MCP-Bandit algorithm under the logistic model merely needs 20 users to outperform the other

three algorithms. This observation suggests that understanding the underlying managerial problem

and identifying the appropriate model for the G-MCP-Bandit algorithm can be critical and bring

substantial revenue improvement for decision-makers.

7. Conclusion

In this research, we develop the G-MCP-Bandit algorithm for online learning and decision-making

processes in high-dimensional settings under limited samples. We adopt the matrix perturbation

technique to derive new oracle inequalities for the MCP estimator under non-i.i.d. samples and fur-

ther propose a linear approximation method, the 2sWL procedure, to overcome the computational

and statistical challenges associated with solving the MCP estimator (an NP-complete problem)

under the bandit setting. We demonstrate that the MCP estimator solved by the 2sWL procedure

matches the oracle estimator with high probability and converges to the true parameters with the

optimal convergence rate. Further, we show that in the data-rich regime, the cumulative regret

of the G-MCP-Bandit algorithm over the sample size T is bounded by O(logT ), which matches

the theoretical lower bound for all possible algorithms under both low-dimensional and high-

dimensional settings. In the covariate dimension d, the cumulative regret of the G-MCP-Bandit

algorithm is upper bounded by O(logd), which is also a tighter bound than existing bandit algo-

rithms. Finally, we illustrate that compared to other benchmarking algorithms, the G-MCP-Bandit

algorithm performs favorably in both synthetic-data-based and real-data-based experiments.

Limitations and future research: One limitation of this paper is that the analysis relies on

the sub-Gaussian assumption, but some other models, such as the Poisson regression, merely sat-

isfy a weaker sub-exponential assumption. Extending the current paper beyond the sub-Gaussian

assumption to the sub-exponential assumption could future generalize this paper. Additionally,

note that implementing the G-MCP-Bandit algorithm in an online setting could be computationally

challenging in practice, especially when the covariate dimension and the decision set are extremely

large. In particular, for every incoming user, the G-MCP-Bandit algorithm needs to update all

arms’ parameter vectors. Hence, when there are millions or billions of ads and users, implement-

ing the G-MCP-Bandit algorithm becomes a highly time-consuming process on a single server.

Hence, another future research direction could combine designing an online-offline hybrid structure,

adopting parallel computing techniques, and using stochastic learning algorithms to improve the

computational performance of the G-MCP-Bandit Algorithm.
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Parameters Explanation
t and T Time indexes.

K The decision set: K= {1,2, ...,K}.
Rk,t and Ri The reward, where k ∈K, t= 1,2, ..., T , and i= 1,2, ..., n.
Xt, x, xt The covariates vectors, where Xt,x,xt ∈Rd, and t= 1,2, ..., T .

d, s The dimension of total covariates and the dimension of significant covariates.
βtrue

k User’s true parameter vector corresponding to arm/decision k.
f(·), L(·) The sample-wise loss function and the negative log-likelihood loss function.

f
′
y(·|y), f

′′
yy(·|y) The first and second order partial derivatives of f(·|y) with respect to y.

xmax, Rmax, b Positive constants that bound parameters defined in assumption A.1.
C A positive constant defined in assumption A.2.

Ko, Ks The optimal and suboptimal decision sets defined in assumption A.3.
Uk A subset of users’ covariates defined in assumption A.3, where k ∈K.

h, p∗ Positive constants defined in assumption A.3.
σ, σ2 Positive constants defined in assumption A.4.
κ The restricted eigenvalue constant defined in assumption A.5.

βoracle, βlasso, βW The oracle, Lasso, and weighted Lasso estimators.

π
The decision-makers’ policy: π = {πt}t≥1, where πt ∈ K is the decision pre-
scribed by policy π at time t.

RC(T ) The cumulative regret up to time T .
A The sample set that contains only i.i.d. samples out of the whole sample set.
w Non-negative weights vector for weighted Lasso in Eq. (6),w= (w1,w2, ...,wd).

Pλ,a(x) The MCP penalty function with positive parameters a and λ.

βMCP,βrandom,βwhole The MCP estimator, the MCP estimator under the random sample set R,
and the MCP estimator under the whole sample set W.

a,λ1, λ2,0, t0 Input parameters for the G-MCP-Bandit algorithm.
δ0(t, t0) δ0(t, t0)

.
= 2((t0 +1)/(e(t+1)))4.

δ1(n, |A|, ζ) δ1(n, |A|, ζ) .
= 2s exp(− nζ2

2σ2x2max
)+ exp(−C1|A|).

δ2(n, |A|, λ) δ2(n, |A|, λ) .
= 4d exp(− nλ2

2σ2x2max
· ( 1

2
− 18ns

|A|κa)
2).

S1, ρ
MCP
S/S1

Terms defined for Proposition 1: S1
.
= {i : |βtrue

i | ≥ ( 24ns|A|κ + a)λ};
ρMCP
S/S1

=̇∥βMCP
S/S1

−βtrue
S/S1

∥1/∥βMCP
S −βtrue

S ∥1 if S1 ̸= S and 0 otherwise.

Rx,k
The set contains the user covariate X generated by the ϵ-decay random sam-
pling method for arm k.

Fi A filtration defined as Fi = {(Xj,Rj) for j ≤ i}.

C0
Defined in the proof of Proposition 4 and used in Proposition 2, 4-6, and
Theorem 1; its dependence on T , d, and s is C0 =O(s2 logd).

C1 Defined in the statements of Lemma EC.1 and EC.2; C1 =O(s−2).

T0, T1
Defined in the proof of Proposition 6 and used in Proposition 6 and Theorem
1; T0 = Õ(s2 logd) and T1 = Õ(β−2

min · s2 logd), where βmin=mini∈Sk,k∈K |βtrue
k,i |.

Cρ,C3,C4,C5
Defined in the proof of Theorem 1; Cρ = O(1), C3 ≤ Õ((1 + ρmax)

2s2 logd),
C4 =O(1), and C5 =O(s2).

E0,E1, ...,E5,(i,j),t(w) Series of events.
{Mk(i)} Martingale sequences used in the proof of Proposition 5.
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EC.1. Appendix: Main Proofs

To simplify the notation in the E-companion, we denote∇BF (x) as the vector with elements (∇F (x))i, i∈B,

where (·)i is the i-th element in the vector. Similarly, we denote ∇2
B,CF (x) as the matrix with elements

(∇2F (x))ij , i ∈ B, j ∈ C, where (·)ij is the element in i-th column and j-th row. To prove the main lemma,

propositions, and theorems in this section, we need four additional technical lemmas (i.e., Lemma EC.1

to Lemma EC.4), whose statements and proofs are given in §EC.2 of this E-Companion. For notational

convenience, we will omit parameters’ subscripts corresponding to the choice of arms, as long as doing so

will not cause any misinterpretation.

Proof of Lemma 1 From the optimality condition of Eq. (3) and βoracle being the optimal solution,

we know that

∇SL(βoracle) = 0. (EC.1)

Expanding∇SL(β) in (EC.1) at βtrue, we can show that via the mean value theorem, for some ξ ∈ {τβoracle+

(1− τ)βtrue, τ ∈ [0,1]}, the following result holds:

∇2
S,SL(ξ)(βoracle

S −βtrue
S ) = 0−∇SL(βtrue)

⇒ (βoracle
S −βtrue

S )⊤∇2
S,SL(ξ)(βoracle

S −βtrue
S ) =−(βoracle

S −βtrue
S )⊤∇SL(βtrue)

⇒u⊤∇2L(ξ)u=−(βoracle
S −βtrue

S )⊤∇SL(βtrue), (EC.2)

where in (EC.2) we denote u=βoracle−βtrue and use the fact βoracle
Sc =βtrue

Sc = 0 to expend the left-hand side

to d dimensional space. By the definition of βoracle and βtrue, it is direct to show that ∥uSc∥1 = 0≤ 3∥uS∥1.

From Lemma EC.1, we know that when |A| ≥ C−1
1 log s, the following inequality holds with probability at

least 1− exp(−C1|A|):

|A|κ
2ns

∥uS∥21 ≤u⊤∇2L(ξ)u. (EC.3)

Combining (EC.2) and (EC.3), we have:

|A|κ
2ns

∥uS∥21 ≤−(βoracle
S −βtrue

S )⊤∇SL(βtrue)

⇒ |A|κ
2ns

∥βoracle
S −βtrue

S ∥21 ≤ ∥βoracle
S −βtrue

S ∥1∥∇SL(βtrue)∥∞

⇒∥βoracle
S −βtrue

S ∥1 ≤
2ns

|A|κ
∥∇SL(βtrue)∥∞. (EC.4)

To obtain an upper bound for ∥βoracle
S −βtrue

S ∥1, we need to show that ∥∇SL(βtrue)∥∞ is also upper bounded.

• Upper bound for ∥∇SL(βtrue)∥∞:

From the definition of L(·), we have

∥∇SL(βtrue)∥∞ =

∥∥∥∥∥ 1n
n∑

j=1

(Xj,S)
⊤f

′

y(Rj |X⊤
j βtrue)

∥∥∥∥∥
∞

, (EC.5)
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where we replace r and y in f ′
y(r|y) by Rj and X⊤

j βtrue respectively, and Xj,S is the subvector of Xj

with elements in S. Under assumption A.4, f
′

y(Rj |X⊤
j βtrue) is a σ2-sub-gaussian random variable. From the

Hoeffding inequality (see Proposition 2.5 in Wainwright 2019), for ζ > 0, we have

P

(∣∣∣∣∣ 1n
n∑

j=1

(Xj,i)f
′

y(Rj |X⊤
j βtrue)

∣∣∣∣∣≥ ζ

)
≤ 2exp

(
− nζ2

2σ2x2
max

)
∀i∈ S, (EC.6)

where the right-hand side uses the fact that all realization ∥xj∥∞ ≤ xmax in assumption A.1. Hence, via

union bound, we can show that

P
(
∥∇SL(βtrue)∥∞ ≥ ζ

)
=P

∥∥∥∥∥ 1n
n∑

j=1

(Xj,S)
⊤f

′

y(Rj |X⊤
j βtrue)

∥∥∥∥∥
∞

≥ ζ


≤
∑
i∈S

P

(∣∣∣∣∣ 1n
n∑

j=1

Xj,if
′

y(Rj |X⊤
j βtrue)

∣∣∣∣∣≥ ζ

)

≤ 2s exp

(
− nζ2

2σ2x2
max

)
, (EC.7)

where the last inequality in (EC.7) follows from |S| ≤ s. At last, the lemma follows directly by combining

(EC.4) and (EC.7).

Proof of Proposition 1 Proposition 1 directly follows Proposition 3 by setting |A|= n.

Proof of Proposition 2 Under the ϵ-decay random sampling method, the probability of randomly

drawn arm k at time t is min{1, t0/t}/|K|, where |K| is the number of arms. Hence, at time T , the expected

total number of times at which arm k was randomly drawn is

E[nk] =
1

|K|

T∑
t=1

min

{
1,

t0
t

}
,

where the expectation is taken with respect to nk, the total number of random samples.

When T > t0,

E[nk] =
1

|K|

(
t0 +

T∑
t=t0+1

t0
t

)
=

t0
|K|

(
1+

T∑
t=t0+1

1

t

)
. (EC.8)

Since the function f(t) = 1/t is decreasing in t, it can be bounded as follows∫ t+1

t

1

x
dx<

1

t
<

∫ t

t−1

1

x
dx, t≥ 2.

As C0 ≥ 20, we can verify that t0 = 2C0|K| ≥ 2. Hence, for any t from t0 +1 to T , we have

log(T +1)− log(t0 +1)<

T∑
t=t0+1

1

t
< log(T )− log(t0). (EC.9)

Combining (EC.8) and (EC.9), we can bound E[nk] as follows:

1

|K|
t0(1+ log(T +1)− log(t0 +1))<E[nk]<

1

|K|
t0(1+ log(T )− log(t0)). (EC.10)

Since nk =
∑T

t=1 1{random sampling for arm k at time t}, we can view nk as the summation of bounded

i.i.d. random variables. By Chernoff bound (see Theorem 4 in Goemans 2015 by setting δ = 0.5), we can
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have the following inequality:

P
(
1

2
E[nk]≤ nk ≤

3

2
E[nk]

)
≥ 1− 2exp

(
− 1

10
E[nk]

)
. (EC.11)

We then relax the E[nk] in (EC.11) by using the upper and lower bounds provided in (EC.10) to attain

the following result:

P

(
t0(1+ log(T +1)− log(t0 +1))

2|K|
≤ nk ≤

3t0(1+ log(T )− log(t0))

2|K|

)
≥ 1− 2

(
t0 +1

e(T +1)

) t0
10|K|

. (EC.12)

When t0 = 2C0|K| and C0 ≥ 20, we have t0
10|K| =C0/5≥ 4. Then, this proposition follows directly by plugging

t0 = 2C0|K| back into (EC.12) and using the definition of δ0(T, t0) in the proposition statement.

Proof of Proposition 3 In the first step of the 2sWL procedure, we solve a Lasso problem. From

Lemma EC.2, we know that if |A| ≥C−1
1 logd, then the inequality ∥βlasso −βtrue∥1 ≤ 24nsλ

|A|κ holds with high

probability. Beside set S1 defined in (9), let’s consider the following index set:

S2=̇

{
i : |βtrue

i |<
(
24ns

|A|κ
+ a

)
λ, i∈ S

}
. (EC.13)

Directly, we can show that

i∈ S1 ⇒ |βlasso
i | ≥ aλ so that wi = P ′

λ,a(|βlasso
i |) = 0;

i∈ S2 ⇒ |βlasso
i | ≤

(
48ns

|A|κ
+ a

)
λ and wi = P ′

λ,a(|βlasso
i |)≤ λ, (EC.14)

where we use the fact that for all x≥ 0

P ′
λ,a(x) =max

(
0, λ− x

a

)
(EC.15)

per definition of MCP penalty in (7). Similarly, for i∈ Sc= {i : |βtrue
i |= 0, i∈ {1,2, ..., d}}, we can show that

i∈ Sc ⇒ |βlasso
i | ≤ 24ns

|A|κ
λ and wi = P ′

λ,a(|βlasso
i |)≥

(
1− 24ns

|A|κa

)
λ, (EC.16)

where the last inequality uses 1− 24ns
|A|κa > 0 for a> 48ns

|A|κ .

Let βMCP be the optimal solution to the second step of the 2sWL procedure. Using the fact that L(β)+∑d

j=1wj |βj | is minimized at βMCP and the fact that L(β) is convex, we have

L(βMCP)+

d∑
j=1

wj |βMCP
j | ≤ L(βtrue)+

d∑
j=1

wj |βtrue
j | (EC.17)

⇒L(βtrue)+∇L(βtrue)⊤(βMCP −βtrue)+

d∑
j=1

wj |βMCP
j | ≤ L(βtrue)+

d∑
j=1

wj |βtrue
j |

⇒∇L(βtrue)⊤(βMCP −βtrue)+

d∑
j=1

wj |βMCP
j | ≤

d∑
j=1

wj |βtrue
j |

⇒∇L(βtrue)⊤(βMCP −βtrue)+
∑
j∈S2

wj |βMCP
j |+

∑
j∈Sc

wj |βMCP
j | ≤

∑
j∈S2

wj |βtrue
j | (EC.18)

⇒∇L(βtrue)⊤(βMCP −βtrue)+
∑
j∈Sc

wj |βMCP
j −βtrue

j | ≤
∑
j∈S2

wj |βMCP
j −βtrue

j |. (EC.19)

where (EC.18) uses the observations that wi = 0 for i ∈ S1 and βtrue
i = 0 for i ∈ Sc, and (EC.19) uses the

observation that βtrue
i = 0 for i∈ Sc.
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Let u=βMCP −βtrue. Then, inequality (EC.19) can be further simplified as follows:

∇L(βtrue)⊤u+
∑
j∈Sc

wj |uj | ≤
∑
j∈S2

wj |uj | (EC.20)

⇒
∑

j∈S1∪S2∪Sc

∇jL(βtrue)uj +
∑
j∈Sc

wj |uj | ≤
∑
j∈S2

wj |uj |

⇒
∑
j∈Sc

(wj − |∇jL(βtrue)|)|uj | ≤
∑
j∈S2

(wj + |∇jL(βtrue)|)|uj |+
∑
j∈S1

|∇jL(βtrue)||uj |

⇒(w̃c −∥∇ScL(βtrue)∥∞)∥uSc∥1 ≤ (w̃2 + ∥∇S2
L(βtrue)∥∞)∥uS2

∥1 + ∥∇S1
L(βtrue)∥∞∥uS1

∥1, (EC.21)

where we define two positive constants, w̃c and w̃2, as follows:

w̃c
.
=

(
1− 24ns

|A|κa

)
λ≤min

j∈Sc
{wj} (EC.22)

and

w̃2
.
= λ≥max

j∈S2

{wj}, (EC.23)

where the inequalities in (EC.22) and (EC.23) are from (EC.16) and (EC.14), respectively.

Now, we define the following event:

Esub,1
.
=

{
∥∇L(βtrue)∥∞ <

3

4
w̃c −

1

4
w̃2

}
. (EC.24)

Then, under event Esub,1, inequality (EC.21) implies(
w̃c −

3

4
w̃c +

1

4
w̃2

)
∥uSc∥1 ≤

(
w̃2 +

3

4
w̃c −

1

4
w̃2

)
∥uS2

∥1 +
(
3

4
w̃c −

1

4
w̃2

)
∥uS1

∥1

⇒1

4
(w̃c + w̃2)∥uSc∥1 ≤

3

4
(w̃2 + w̃c)∥uS2

∥1 +
3

4
(w̃2 + w̃c)∥uS1

∥1 − w̃2∥uS1
∥1

⇒(w̃c + w̃2)∥uSc∥1 ≤ 3(w̃2 + w̃c)∥uS∥1 − 4w̃2∥uS1
∥1

⇒∥uSc∥1 ≤ 3∥uS∥1 −
4w̃2

w̃c + w̃2

∥uS1
∥1

⇒∥uSc∥1 ≤ 3∥uS∥1. (EC.25)

Combining (EC.25) and Lemma EC.1, we can show that for all feasible ξ, the following inequality holds:

P

(
|A|κ
2ns

∥uS∥21 ≤ u⊤∇2L(ξ)u
)
≥ 1− exp(−C1|A|). (EC.26)

Now, we go back to (EC.17) and expand the L(β) term in the left-hand side at βtrue. Denoting u=βMCP−
βtrue, we can show that there exists a feasible ξ between βMCP and βtrue such that

L(βtrue)+∇L(βtrue)⊤u+
1

2
u⊤∇2L(ξ)u+

d∑
i=1

wi|βMCP
i | ≤ L(βtrue)+

d∑
i=1

wi|βtrue
i |

⇒∇L(βtrue)⊤u+
1

2
u⊤∇2L(ξ)u+

d∑
i=1

wi|βMCP
i | ≤

d∑
i=1

wi|βtrue
i |

⇒∇L(βtrue)⊤u+
|A|κ
4ns

∥uS∥21 +
d∑

i=1

wi|βMCP
i | ≤

d∑
i=1

wi|βtrue
i | (EC.27)

⇒|A|κ
4ns

∥uS∥21 ≤
d∑

i=1

(
−∇iL(βtrue)ui +wi(|βtrue

i | − |βMCP
i |)

)
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⇒|A|κ
4ns

∥uS∥21 ≤
∑

i∈S1∪S2∪Sc

(
−∇iL(βtrue)ui +wi(|βtrue

i | − |βMCP
i |)

)
, (EC.28)

where inequality (EC.27) uses (EC.26) and we defer the consideration of the probability part via union bound

to (EC.34). Then, we can bound the right hand side of (EC.28) by considering i∈ S1,S2 and Sc separately.

• i∈ S1: ∑
i∈S1

(
−∇iL(βtrue)ui +wi(|βtrue

i | − |βMCP
i |)

)
≤
∑
i∈S1

(∣∣∇iL(βtrue)
∣∣+wi

)
|ui|

=
∑
i∈S1

(∣∣∇iL(βtrue)
∣∣) |ui|

≤∥uS1
∥1∥∇S1

L(βtrue)∥∞, (EC.29)

where the equality uses wi = 0 for all i∈ S1.

• i∈ S2: ∑
i∈S2

(
−∇iL(βtrue)ui +wi(|βtrue

i | − |βMCP
i |)

)
≤
∑
i∈S2

(∣∣∇iL(βtrue)
∣∣+wi

)
|ui|

≤∥uS2
∥1
(
∥∇S2

L(βtrue)∥∞ +λ
)
, (EC.30)

where the last inequality uses wi ≤ λ for i∈ S2.

• i∈ Sc: ∑
i∈Sc

(
−∇iL(βtrue)ui +wi(|βtrue

i | − |βMCP
i |)

)
=
∑
i∈Sc

(
−∇iL(βtrue)βMCP

i −wi|βMCP
j |

)
≤
∑
i∈Sc

(
|∇iL(βtrue)||βMCP

i | −wi|βMCP
i |

)
≤
∑
i∈Sc

(
3

4
w̃c −

1

4
w̃2 −wi

)
|βMCP

i |

≤0, (EC.31)

where in the second-to-last inequality, we use the event Esub,1 in (EC.24), and in the last inequality, we adopt

the fact that w̃c ≤wi, w̃2 > 0, and wi > 0 by definitions.

Then, we combine (EC.28), (EC.29), (EC.30) and (EC.31):

|A|κ
4ns

∥uS∥21 ≤ ∥uS1
∥1∥∇S1

L(βtrue)∥∞ + ∥uS2
∥1
(
∥∇S2

L(βtrue)∥∞ +λ
)

⇒|A|κ
4ns

∥uS∥21 ≤ ∥uS∥1∥∇SL(βtrue)∥∞ +λ∥uS2
∥1

⇒∥uS∥1 ≤
4ns

|A|κ
∥∇SL(βtrue)∥∞ +

4ns

|A|κ
·λ · ∥uS2

∥1
∥uS∥1

⇒∥u∥1 = ∥uS∥1 + ∥uSc∥1 ≤ 4∥uS∥1 ≤
16ns

|A|κ
∥∇SL(βtrue)∥∞ +

16ns

|A|κ
·λ · ∥uS2

∥1
∥uS∥1

(EC.32)
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⇒∥βMCP −βtrue∥1 ≤
16ns

|A|κ
∥∇SL(βtrue)∥∞ +

16ns

|A|κ
·
∥βMCP

S2
−βtrue

S2
∥1

∥βMCP
S −βtrue

S ∥1
·λ

⇒∥βMCP −βtrue∥1 ≤
16ns

|A|κ
∥∇SL(βtrue)∥∞ +

16ns

|A|κ
· ρMCP

S/S1
·λ,

where first inequality in (EC.32) applies (EC.25), and we use the definition of ρMCP
S/S1

(i.e., Equation (12)) in

the last inequality. Then, via (EC.7), we can bound ∥∇SL(βtrue)∥∞ as follows:

P(∥∇SL(βtrue)∥∞ ≤ ζ)≥ 1− 2s exp

(
− nζ2

2σ2x2
max

)
. (EC.33)

Next, we build the probability bound for event Esub,1 in (EC.24) by the Hoeffding’s inequality. For t > 0,

from (EC.7), we have

P
(∥∥∇L(βtrue)

∥∥
∞ ≥ t

)
≤ 2d exp

(
− nt2

2σ2x2
max

)
⇒P

(∥∥∇L(βtrue)
∥∥
∞ ≥ 3

4
w̃c −

1

4
w̃2

)
≤ 2d exp

(
−
n( 3

4
w̃c − 1

4
w̃2)

2

2σ2x2
max

)
⇒P

(∥∥∇L(βtrue)
∥∥
∞ ≥

(
1

2
− 18ns

|A|κa

)
λ

)
≤ 2d exp

(
− nλ2

2σ2x2
max

·
(
1

2
− 18ns

|A|κa

)2
)
.

Combining this result with Lemma EC.2, we can show that if |A| ≥C−1
1 logd and a> 48ns

|A|κ (which also implies

that 1
2
> 18ns

|A|κa ), the proposition statement holds with probability

1− exp(−C1|A|)− 2d exp

(
− nλ2

8σ2xmax

)
− 2s exp

(
− nζ2

2σ2xmax

)
− 2d exp

(
− nλ2

2σ2xmax

·
(
1

2
− 18ns

|A|κa

)2
)

≥1− exp(−C1|A|)− 4d exp

(
− nλ2

2σ2xmax

·
(
1

2
− 18ns

|A|κa

)2
)
− 2s exp

(
− nζ2

2σ2x2
max

)
, (EC.34)

where the last inequality uses the fact that
(

1
2
− 18ns

|A|κa

)2
≤ 1

4
.

Proof of Proposition 4 For clear expositions, we first state two constants that we will use in this

proof:

C0 ≥max

{
20,

64

p∗ ,
24 logd

p∗C1

,
96

p∗C1

,
3072σ2x2

max(1+ logd)

λ2

}
(EC.35)

and

λ≤min

{
hκp∗

3072eσsRmaxxmax

,
p∗κ

768σsxmax

}
. (EC.36)

As C1 =O(s−2) per equation (EC.125), it is direct to verify that C0 =O(s2 logd). Further, we denote event

E3 as follows:

E3 =
{
|A|
n

≥ 1

24
p∗
}
. (EC.37)

Note that for the suboptimal arm set (i.e., k ∈ Ks), event E3 holds automatically, as |A|= n for k ∈ Ks so

that |A|/n> p∗/24 always holds true; for the optimal arm set (i.e., k ∈Ko), |A|/n represents the proportion

of covariate vectors X that are in the set Uk (i.e., X ∈Uk) to all n i.i.d. samples that are generated via the

ϵ-decay sampling scheme, and we will bound the probability for event E3 later in (EC.45).
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Combining Proposition 2 and event E3, we can show that when C0 ≥ max
{
20, 24 log d

p∗C1

}
, the following

inequalities hold simultaneously with probability at least 1− δ0(t, t0):

|A| ≥ p∗

24
n≥ p∗

24
C0(1+ log(t+1)− log(t0 +1))≥ p∗

24
C0 ≥C−1

1 logd. (EC.38)

In addition, given E3, we can show that under the condition a> 1152s
p∗κ

, the following inequality holds:

a>
1152s

p∗κ
≥ 48ns

κ|A|
. (EC.39)

Hence, with (EC.38) and (EC.39), it is direct to show that the inequality (16) in Proposition 3 holds: for

ζ > 0, we have the following inequality:

P

(
∥βrandom −βtrue∥1 ≤

16nsζ

|A|κ
+

16nsρrandomS/S1

|A|κ
λ

)
≥ 1− δ1(n, |A|, ζ)− δ2(n, |A|, λ)

⇒P
(
∥βrandom −βtrue∥1 ≤

32ns

|A|κ
λ

)
≥ 1− δ1(n, |A|, λ)− δ2(n, |A|, λ), (EC.40)

where in (EC.40), we set ζ = λ and use ρrandomS/S1
≤ 1.

Combining event E3 and Proposition 2, we can show that with probability at least 1−δ0(t, t0), the following

results hold

n≥C0(1+ log(t+1)− log(t0 +1)) and |A| ≥ p∗

24
n≥ p∗

24
C0(1+ log(t+1)− log(t0 +1)). (EC.41)

Then, we can further simplify (EC.41) as follows:

n≥C0 log

(
e(t+1)

t0 +1

)
and |A| ≥ p∗

24
C0 log

(
e(t+1)

t0 +1

)
. (EC.42)

Now, if we set C0 ≥ max
{

96
p∗C1

,
3072σ2x2

max(1+log d)

λ2

}
, then we can directly verify that δ1(n, |A|, λ) =

2s exp
(
− nλ2

2σ2x2
max

)
+ exp(−C1|A|) ≤ δ0(t, t0) +

1
2
δ0(t, t0) and δ2(n, |A|, λ) ≤ 2δ0(t, t0), combining which we

have the following result:

δ1(n, |A|, λ)+ δ2(n, |A|, λ)≤ 7

2
δ0(t, t0). (EC.43)

Next, we need to bound the probability for event E3 for k ∈Ko. First, we can show that{
|A|
n

≥ 1

24
p∗
}
⊇
{
|A| ≥ 1

4
p∗C0 log

(
e(t+1)

t0 +1

)}
∩
{
n≤ 6C0 log

(
e(t+1)

t0 +1

)}
=

({
|A|< 1

4
p∗C0 log

(
e(t+1)

t0 +1

)}
∪
{
n> 6C0 log

(
e(t+1)

t0 +1

)})c

, (EC.44)

which infers that for k ∈Ko,

P

{
|A|
n

≥ 1

24
p∗
}
≥P

{({
|A|< 1

4
p∗C0 log

(
e(t+1)

t0 +1

)}
∪
{
n> 6C0 log

(
e(t+1)

t0 +1

)})c}
= 1−P

{{
|A|< 1

4
p∗C0 log

(
e(t+1)

t0 +1

)}
∪
{
n> 6C0 log

(
e(t+1)

t0 +1

)}}
≥ 1−P

{
|A|< 1

4
p∗C0 log

(
e(t+1)

t0 +1

)}
−P

{
n> 6C0 log

(
e(t+1)

t0 +1

)}
. (EC.45)
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Now, we will separately consider bounds for P
{
|A|< 1

4
p∗C0 log

(
e(t+1)

t0+1

)}
and P

{
n> 6C0 log

(
e(t+1)

t0+1

)}
.

• The probability bound for n> 6C0 log
(

e(t+1)

t0+1

)
:

From Proposition 2, when t≥ t0, the following result holds with probability 1− δ0(t, t0):

n≤ 3C0(1+ log(t)− log(t0)) = 3C0 log

(
et

t0

)
< 3C0 log

(
2e(t+1)

2t0

)
< 3C0 log

(
2e(t+1)

t0 +1

)
= 3C0 log

(
e(t+1)

t0 +1

)
+3C0 log (2)

< 6C0 log

(
e(t+1)

t0 +1

)
, (EC.46)

where the last inequality uses 2< e< e(t+1)

t0+1
.

• The probability bound for |A|< 1
4
p∗C0 log

(
e(t+1)

t0+1

)
:

By Proposition 2 and assumption A.3, we can show that the expected number of i.i.d. samples belong to Uk

for k ∈K is lower bounded with high probability by

EX

[
t∑

i=1

1(Xi ∈Uk)

]
≥ p∗C0(1+ log(t+1)− log(t0 +1))

>
1

2
p∗C0 log

(
e(t+1)

t0 +1

)
. (EC.47)

Then, we apply the Chernoff inequality (similar to the analysis for (EC.11)) on
∑n

i=1 1(xi ∈Uk):

P

(
t∑

i=1

1(Xi ∈Uk)<
1

2
EX

[
t∑

i=1

1(Xi ∈Uk)

])
≤ exp

(
−1

8
EX

[
t∑

i=1

1(Xi ∈Uk)

])

⇒P

(
t∑

i=1

1(Xi ∈Uk)<
1

4
p∗C0 log

(
e(t+1)

t0 +1

))
≤ exp

(
− 1

16
p∗C0 log

(
e(t+1)

t0 +1

))
. (EC.48)

When C0 ≥ 64/p∗, (EC.48) can be further simplified as follows:

P

(
t∑

i=1

1(Xi ∈Uk)<
1

4
p∗C0 log

(
e(t+1)

t0 +1

))
≤ (t0 +1)4

e4(t+1)4

⇒P
(
|A|< 1

4
p∗C0 log

(
e(t+1)

t0 +1

))
≤ (t0 +1)4

e4(t+1)4
=

1

2
δ0(t, t0). (EC.49)

Having proved these two probability bounds, we can combine (EC.45), (EC.46), and (EC.49) to show that

P{E3|k ∈Ko} ≥ 1− 3

2
δ0(t, t0),

which implies that

P{E3}=P{E3|k ∈Ks}P{Ks}+P{E3|k ∈Ko}P{Ko}

≥P{E3|k ∈Ko}P{Ks}+P{E3|k ∈Ko}P{Ko}

=P{E3|k ∈Ko} ≥ 1− 3

2
δ0(t, t0), (EC.50)
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where the first inequality uses the fact that P{E3|k ∈Ks}= 1≥P{E3|k ∈Ko}. Finally, combining (EC.40),

(EC.43), and (EC.50), via union bound, we have

P

(
∥βrandom −βtrue∥1 ≤

32ns

|A|κ
λ

)
≥ 1− 5δ0(t, t0). (EC.51)

Moreover, if we pick λ to be small enough (e.g., λ≤min
{

hκp∗

3072eσsRmaxxmax
, p∗κ
768σsxmax

}
), then when event E3

holds, we have the following two results:

32nsλ

|A|κ
≤ 32ns ·hp∗κ

3072eσsRmaxxmax|A|κ
=

h

4eσRmaxxmax

· n

|A|
· p

∗

24
≤ h

4eσRmaxxmax

(EC.52)

32nsλ

|A|κ
≤ 32nsp∗κ

768σsxmax|A|κ
=

1

σxmax

· n

|A|
· p

∗

24
≤ 1

σxmax

, (EC.53)

from which the proposition follows immediately.

Proof of Proposition 5 Here, we will continue using the same requirement of C0 stated in (EC.35).

Because {Mk(i)} for k ∈K is a martingale with a bounded difference of 1 per the definition in (19), we can

use Mk(0) to bound the value of Mk(t) via Azuma’s inequality as follows:

P

(
Mk(t)−Mk(0)≤−1

2
Mk(0)

)
≤ exp

(
−Mk(0)

2

8(t+1)

)
⇒P

(
Mk(t)≤

1

2
Mk(0)

)
≤ exp

(
−Mk(0)

2

8(t+1)

)
. (EC.54)

The Mk(0) term can be stated as follows

Mk(0) =EX

[
t∑

i=1

1(Xi ∈Uk,E2,Xi /∈Rx,k))

]

=

t∑
i=1

P(Xi ∈Uk,E2,Xi /∈Rx,k). (EC.55)

As {Xi ∈ Uk} is independent of {E2,Xi /∈Rx,k}, and {Xi /∈Rx,k} is independent of {E2}, (EC.55) implies

the following inequality

Mk(0) =

t∑
i=1

P(Xi ∈Uk)P(E2)P(Xi /∈Rx,k)

≥
t∑

i=1

p∗ (1− 5δ0(t, t0))

(
1− 2C0

t

)
, (EC.56)

where (EC.56) uses assumption A.3, Proposition 4, and the definition of ϵ-decay random sampling scheme

with t0 = 2C0|K|.

When t≥ t0, we have

5δ0(t, t0) =
10(t0 +1)4

e4(t+1)4
≤ 1

2
and

2C0

t
≤ 1

2
, (EC.57)

where the second inequality uses t≥ t0 = 2C0|K| ≥ 4C0. Inequalities in (EC.57) imply that

Mk(0)≥
t∑

i=1

p∗

4
=

p∗t

4
. (EC.58)
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Finally, combining (EC.54) and (EC.58), we can show that the following inequalities hold:

P

(
Mk(t)≤

p∗t

8

)
≤ exp

(
− (p∗t)2/16

8(t+1)

)
⇒P

(
Mk(t)≤

p∗t

8

)
≤ exp

(
− (p∗)2t/16

16

)
⇒P

(
Mk(t)≤

p∗t

8

)
≤ exp

(
− (p∗)2t

256

)
, (EC.59)

where the second inequality uses t/(t+1)≥ 1
2
.

Proof of Proposition 6 For clear expositions, we first state the following constants:

T0 ≥max

{
48

C1p∗ log

(
16

C1p∗

)
,

8

p∗C1

logd,2|K|C0

}
, (EC.60)

T1 ≥max

{
6(192s+κp∗a)2λ2

2,0

(κp∗mink,i∈Sk |βtrue
k,i |)2

log

(
2(192s+κp∗a)2λ2

2,0

(κp∗mink,i∈Sk |βtrue
k,i |)2

)
,
2(192s+κp∗a)2λ2

2,0 logd

(κp∗mink,i∈Sk |βtrue
k,i |)2

}
, (EC.61)

λ2,0 =
4σxmaxp

∗κa

p∗κa− 288s
, (EC.62)

where C0,C1 are defined in (EC.35) and (EC.125) respectively. We further require a > 1152s
p∗k

=O(s) in the

statement of this proposition, and then we can verify T0 = Õ(s2 logd), T1 = Õ(β−2
mins

2 logd), and λ2,0 =O(1).

Note that if the estimator βrandom
j is close to βtrue

j for all j ∈K, then assumption A.3 implies that for xt ∈Uj ,

we can clearly separate Eϵ[Rt|xtβ
random
j ] and maxi ̸=jEϵ[Rt|xtβ

random
i ]. Specifically, part 2 of Lemma EC.3

shows that under event E2, the following inequality holds for any x∈Uk and k ∈Ko:

Eϵ[Rk|x⊤βrandom
k ]>max

j ̸=k
Eϵ[Rj |x⊤βrandom

j ] +
h

2
, (EC.63)

which implies

Eϵ[Rk|x⊤
t β

random
k ] =max

j∈K
Eϵ[Rj |x⊤

t β
random
j ]

and for any j ̸= k,

Eϵ[Rj |x⊤
t β

random
j ]<Eϵ[Rk|x⊤

t β
random
k ]− 1

2
h.

Further note that the G-MCP-Bandit algorithm constructs the optimal decision set as follows:

Πt =

{
i :Eϵ[Ri|x⊤

t β
random
i ]≥max

j∈K
Eϵ[Ri|x⊤

t β
random
j ]− 1

2
h

}
,

and therefore, for xt ∈ Uk, the optimal decision set will be a singleton, i.e., Πt = {k}, which suggests that

decision-makers will assign k as the final decision by merely using the random-sample based estimator

βrandom. As the event E2 is associated with the random estimator using randomly collected samples up to

t−1 period, the set {xt :xt ∈Uk,E2,xt /∈Rx,k} can be viewed as i.i.d. sample from the condition distribution

PX|X∈Uk
. Then, from Proposition 5, we have

P

(
Mk(t)≤

p∗t

8

)
≤ exp

(
− (p∗)2t

256

)
, (EC.64)

where {Mk(i)} is defined in (19). As Mk(t) = Eϵ,X

[∑t

i=1 1(Xi ∈Uk,E2,Xi /∈Rx,k)|Ft

]
=
∑t

i=1 1(xi ∈

Uk,E2,xi /∈Rx,k), the amount of i.i.d. samples in Uk among the whole sample set for arm k up to time t will
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be lower bounded by Mk(t). Denote A and n as the set of i.i.d. samples belonging to Uk in the whole sample

set and the size of the whole sample, respectively. The following two inequalities hold:

P

(
|A| ≥ p∗t

8

)
≥ 1− exp

(
− (p∗)2t

256

)
and n≤ t. (EC.65)

If |A| ≥ p∗t
8

and n≤ t, then we can obtain the following result:

a>
1152s

p∗κ
≥ 144st

|A|κ
>

48sn

κ|A|
. (EC.66)

Moreover, as t > T0 ≥ 8(p∗C1)
−1 logd, then, by (EC.65), we have |A| ≥ C−1

1 logd with high probability.

Combining this result with (EC.66) (i.e., two conditions required in Proposition 3), we have the following

result via Proposition 3:

P

(
∥βwhole −βtrue∥1 ≥

16nsζ

|A|κ
+

16nsρwhole
S/S1

|A|κ
λ

)
≤ δ1(n, |A|, ζ)+ δ2(n, |A|, λ)

⇒P

(
∥βwhole −βtrue∥1 ≥

128sζ

p∗κ
+

128sρwhole
S/S1

p∗κ
λ

)
≤ δ1

(
t,
p∗t

8
, ζ

)
+ δ2

(
t,
p∗t

8
, λ

)
, (EC.67)

where (EC.67) uses (EC.65) and the fact that n≤ t in the left-hand side and the facts that δ1(·) and δ2(·)

are monotonically decreasing in |A| in the right-hand side.

When t ≥ T1, (EC.67) can be further simplified. We use Lemma EC.4 in E-Companion with α =
(κp∗ min

i:|βtrue
i

|>0
|βtrue

i |)2

2(192s+κp∗a)2λ2
2,0

. When t≥ T1, we have t≥ 3α−1 logα−1, combining with the nonnegativity of t, we

can show that

αt≥ log t

⇒
(κp∗mini:|βtrue

i
|>0 |βtrue

i |)2

2(192s+κp∗a)2λ2
2,0

t≥ log t

⇒ t

2
≥

(192s+κp∗a)2λ2
2,0

(κp∗mini:|βtrue
i

|>0 |βtrue
i |)2

log t. (EC.68)

Moreover, as T1 ≥
2(192s+κp∗a)2λ2

2,0 log d

(κp∗ min
i:|βtrue

i
|>0

|βtrue
i

|)2 , we can show that when t > T1, the following inequality holds

t

2
≥

(192s+κp∗a)2λ2
2,0 logd

(κp∗mini:|βtrue
i

|>0 |βtrue
i |)2

. (EC.69)

Combining (EC.69) and (EC.68), we can verify that

t≥
(192s+κp∗a)2λ2

2,0(log t+ logd)

(κp∗mini:|βtrue
i

|>0 |βtrue
i |)2

⇒ min
i:|βtrue

i
|>0

|βtrue
i | ≥ 192s+κp∗a

κp∗ ·λ2,0

√
log t+ logd

t

⇒ min
i:|βtrue

i
|>0

|βtrue
i | ≥

(
192s

κp∗ + a

)
·λ2,0

√
log t+ logd

t

⇒ min
i:|βtrue

i
|>0

|βtrue
i | ≥

(
24ns

κ|A|
+ a

)
·λ2,0

√
log t+ logd

t
(EC.70)

⇒ min
i:|βtrue

i
|>0

|βtrue
i | ≥

(
24ns

κ|A|
+ a

)
·λ2,t. (EC.71)
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where (EC.70) uses |A| ≥ p∗t
8

and t≥ n and (EC.71) uses the definition of λ2,t = λ2,0 ·
√

(log t+ logd)/t. Now,

we use the set S1 in the Proposition 3 by setting λ= λ2,t, which directly implies that S1 = S so that we have

S/S1 being the empty set and

ρwhole
S/S1

= 0. (EC.72)

Hence, when t > T1, we can use (EC.72) to simplify (EC.67) into

P

(
∥βwhole −βtrue∥1 ≥

128sζ

p∗κ

)
≤ δ1

(
t,
p∗t

8
, ζ

)
+ δ2

(
t,
p∗t

8
, λ2,t

)
. (EC.73)

Finally, we will show that when t > T0, the following two inequalities hold:

δ1

(
t,
p∗t

8
, ζ

)
≤ 2

(t+1)2
+2s exp

(
− tζ2

2σ2x2
max

)
, (EC.74)

δ2

(
t,
p∗t

8
, λ2,t

)
≤ 8

(t+1)2
. (EC.75)

Let’s first establish the first inequality (EC.74). Via Lemma EC.4 in E-Companion with α= C1p
∗

16
, we can

show that because t > T0 ≥max
{

48
C1p∗

log
(

16
C1p∗

)
,0
}
, we have C1p

∗

16
t≥ log t⇒ C1p

∗

8
t≥ 2 log t, which implies

that

exp (−C1|A|)≤ exp

(
−C1

p∗

8
t

)
≤ 1

t2
≤ 2

(t+1)2
, (EC.76)

where the last inequality uses the fact that t−2 ≤ 2(t+ 1)−2 holds for all t ≥ T0 ≥ 2|K|C0 > 3. Combining

(EC.76) with the definition of δ1(t, |A|, ζ), we will reach (EC.74). Next, we will show the second inequality

(EC.75). When λ2,0 =
4σxmaxp

∗κa
p∗κa−288s

, we can show that

δ2(t,
p∗t

8
, λ2,t) = 4d exp

(
−

tλ2
2,0

2σ2x2
max

· log t+ logd

t
·
(
1

2
− 144s

p∗κa

)2
)

= 4d exp

(
−16σ2x2

max(p
∗κa)2

(p∗κa− 288s)2
· t

2σ2x2
max

· log t+ logd

t
·
(
1

2
− 144s

p∗κa

)2
)

= 4exp(−2(log t+ logd)+ logd)≤ 4exp (−2 log t)≤ 4

t2
≤ 8

(t+1)2
,

where the last inequality still uses the fact that t−2 ≤ 2(t+1)−2 for t > 3. Combining (EC.74) and (EC.75),

we have

δ1

(
t,
p∗t

8
, ζ

)
+ δ2

(
t,
p∗t

8
, λ

)
≤ 10

(t+1)2
+2s exp

(
− tζ2

2σ2x2
max

)
. (EC.77)

Proposition 6 directly follows by combining (EC.67), (EC.73), (EC.77), and P(Ec
2)≤ 5δ0(T, t0) from Propo-

sition 4.

Proof of Theorem 1 We divide the time, up to time T , into three groups and derive the cumulative

regret bound for each group separately. Consider the following three groups:

1. t∈ {{t : (Xt,Rt)∈Rk, k ∈K}∪{t≤ T0}}.

2. t∈ {{t : (Xt,Rt) /∈Rk, k ∈K, t > T0}∩ {E2 doesn’t hold}}.

3. t∈ {{t : (Xt,Rt) /∈Rk, k ∈K, t > T0}∩ {E2 holds}}.
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In this proof, we follow the same choices of C0 =O(s2 logd) in (EC.35), T1 = Õ(β−2
mins

2 logd) in (EC.61), λ1 =

O(s−1) in (EC.36), λ2,0 =O(1) in (EC.62), T0 = Õ(s2 logd), and a > 1152s
p∗κ

=O(s). Beside the requirements

for T0 in (EC.60), we also require that

T0 ≥max
{
t0,
(512sλ2,0

p∗κ

)2
logd,3

(512sλ2,0

p∗κ

)2
log
(512sλ2,0

p∗κ

)2
,
(1024σeσxmaxxmaxsλ2,0

p∗κ

)2
logd,

3
(1024σeσxmaxxmaxsλ2,0

p∗κ

)2
log
(1024σeσxmaxxmaxsλ2,0

p∗κ

)2}
, (EC.78)

and T0 remains on the order of Õ(s2 logd).

• Regret in part 1:

Denote the regret for the first part as R1(T ), and we have

R1(T )≤Rmax

(
T∑

t=T0

1 ((Xt,Rt)∈Rk, k ∈K)+T0

)
≤Rmax

(∑
k∈K

|Rk|+T0

)
, (EC.79)

where |Rk| is the cardinality of Rk. From Proposition 2, when t0 = 2C0|K| and C0 ≥ 20 , we know that

P (|Rk| ≤ 3C0(1+ log(T )− log(t0)))≥ 1− δ0(T, t0)

⇒P (|Rk| ≤ 3C0 log(T ))≥ 1− δ0(T, t0), (EC.80)

which implies

P

(∑
k∈K

|Rk|> |K| · 3C0 log (T )

)
≤
∑
k∈K

P (|Rk|> 3C0 log (T ))≤ |K|δ0(T, t0). (EC.81)

We then combine (EC.79) and (EC.81) to bound the regret in part 1:

R1(T )≤Rmax

(∑
k∈K

|Rk|+T0

)
≤Rmax

(∑
k∈K

|Rk|

)
P

(∑
k∈K

|Rk|> 3C0|K| log (T )

)

+Rmax (3C0|K| log (T ))P

(∑
k∈K

|Rk| ≤ 3C0|K| log (T )

)
+RmaxT0

≤RmaxT |K|δ0(T, t0)+Rmax3C0|K| log (T )+RmaxT0

≤ 2Rmax|K|(t0 +1)+3RmaxC0|K| logT +RmaxT0 (EC.82)

≤ 3C0Rmax|K| logT +5Rmax|K|T0, (EC.83)

where (EC.82) uses Tδ0(T, t0)≤ (T +1) 2(t0+1)4

e4(T+1)4
≤ 2(t0 +1) for T ≥ t0 and (EC.83) uses (t0 +1)< 2t0 ≤ 2T0

and |K|> 1.

• Regret in part 2:

Denote the cumulative regret for the second part as R2(T ). From Proposition 4, at time t, we know that

P

(
∥βrandom

k −βtrue
k ∥1 ≤min

{
1

σxmax

,
h

4eσRmaxxmax

})
≥ 1− 5δ0(t, t0), k ∈K

⇒P(E2(t)c)≤ 5|K|δ0(t, t0), (EC.84)

where E2(t) denotes the event E2 at time t.
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Therefore, R2(T ) can be bounded as follows:

R2(T )≤EX,ϵ

[
T∑

i=T0+1

1(E2(i)c)Rmax

]
=Rmax

T∑
i=T0+1

P(E2(i)c)

⇒R2(T )≤Rmax

T∑
i=T0+1

5|K|δ0(i, t0)

≤ 5Rmax|K|
∫ T−1

i=T0

δ0(i, t0)di

= 10Rmax|K|
∫ T−1

i=T0

(t0 +1)4

e4(i+1)4
di

=−10

3
Rmax|K| · (t0 +1)4

e4(i+1)3

∣∣∣∣T−1

T0

=
10

3
e−4Rmax|K|(t0 +1)4(T0 +1)−3 − 10

3
e−4Rmax|K|(t0 +1)4(T )−3

≤ 2Rmax|K|T0,

where last inequality we use 10
3
e−4 < 1

8
and (t0 +1)< 2t0 ≤ 2T0.

• Regret in part 3:

Denote the cumulative regret for the third part as R3(T ). We first consider the case where T ≤ T1. By

the second part of Lemma EC.3, it is direct to show that the optimal decision set Πt constructed in the

G-MCP-Bandit Algorithm only contains arms in the optimal decision subset Ko. Without loss of generality,

we assume that arm i is the true optimal arm at time t. Then, the regret at time t can be bounded as follows

regrett ≤EX

[∑
j∈Πt

1

(
j = argmax

k∈Πt

Eϵ[Rk|X⊤
t βwhole

k ]

)(
Eϵ[Ri|X⊤

t βtrue
i ]−Eϵ[Rj |X⊤

t βtrue
j ]

)]

≤EX

(∑
j ̸=i

1
(
Eϵ[Rj |X⊤

t βwhole
j ]≥Eϵ[Ri|X⊤

t βwhole
i ]

)
(Eϵ[Ri|X⊤

t βtrue
i ]−Eϵ[Rj |X⊤

t βtrue
j ])

)
.

(EC.85)

We then denote

E(t,w, δt)4,k =
{
Eϵ[Ri|X⊤

t βtrue
i ]−Eϵ[Rk|X⊤

t βtrue
k ]∈ [wδt, (w+1)δt)

}
, (EC.86)

where k ̸= i, k ∈Ko,w= 0,1, ..., and δt > 0. Then, we have the following bound:

regrett ≤EX

(
w1,t∑
w=0

∑
j ̸=i

1
({
Eϵ[Rj |X⊤

t βwhole
j ]≥Eϵ[Ri|X⊤

t βwhole
i ]

}
∩E(t,w, δt)4,j

)
(w+1)δt

)

=

w1,t∑
w=0

(w+1)δt

(∗)︷ ︸︸ ︷∑
j ̸=i

P
({
Eϵ[Rj |X⊤

t βwhole
j ]≥Eϵ[Ri|X⊤

t βwhole
i ]

}
∩E(t,w, δt)4,j

)
, (EC.87)

where w1,t = ⌈Rmax/δt⌉. Now we consider the (*) term in (EC.87), which can be bounded as follows:

(∗)≤
∑
j ̸=i

P
({
Eϵ[Rj |X⊤

t βwhole
j ]−Eϵ[Rj |X⊤

t βtrue
j ]≥Eϵ[Ri|X⊤

t βwhole
i ]−Eϵ[Ri|X⊤

t βtrue
i ] +wδt

}
∩E(t,w, δt)4,j

)
≤
∑
j ̸=i

P
({∣∣Eϵ[Rj |X⊤

t βwhole
j ]−Eϵ[Rj |X⊤

t βtrue
j ]

∣∣+ |Eϵ[Ri|X⊤
t βwhole

i ]−Eϵ[Ri|X⊤
t βtrue

i ]| ≥wδt
}
∩E(t,w, δt)4,j

)
,

(EC.88)
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where the first inequality uses the fact that Eϵ[Ri|X⊤
t βtrue

i ]−Eϵ[Rj |X⊤
t βtrue

j ]∈ [wδt, (w+1)δt) when event

E(t,w, δt)4,j holds. To simplify the notation, we denote ∆k = βwhole
k −βtrue

k for k ∈Πt. Combining (EC.88)

with the first part of Lemma EC.3, we can show

(∗)≤
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

}
∩E(t,w, δt)4,j

)
=
∑
j ̸=i

P

(
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

)
P(E(t,w, δt)4,j), (EC.89)

where the last equality uses the fact that in ∆i and ∆j , the terms βwhole
t only depend on historical samples

upto t− 1 (independent on t step’s information), which implies their independence on E(t,w, δt)4,j .

Denote event E5,(i,j),t(w) as follows

E5,(i,j),t(w) =
{{

∥∆i∥1 ≥min

{
wδt

2Rmaxσeσxmaxxmax

,1

}}
∪
{
∥∆j∥1 ≥min

{
wδt

2Rmaxσeσxmaxxmax

,1

}}}
.

(EC.90)

Then, conditioning on E5,(i,j),t(w), the right hand side of (EC.89) can be transformed into∑
j ̸=i

P

(
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

)
P(E(t,w, δt)4,j)

=
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

}
∩E5,(i,j),t(w)

)
P(E(t,w, δt)4,j)

+
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

}
∩ (E5,(i,j),t(w))c

)
P(E(t,w, δt)4,j)

≤
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

}
∩E5,(i,j),t(w)

)
P(E(t,w, δt)4,j)

+
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmaxxmax

}
∩ (E5,(i,j),t(w))c

)
P(E(t,w, δt)4,j)

=
∑
j ̸=i

P

({
∥∆j∥1 + ∥∆i∥1 ≥

wδt
Rmaxσeσxmax max{∥∆j∥1,∥∆i∥1}xmax

}
∩E5,(i,j),t(w)

)
P(E(t,w, δt)4,j)

≤
∑
j ̸=i

P(E5,(i,j),t(w))P(E(t,w, δt)4,j). (EC.91)

We first bound P(E5,(i,j),t(w)). As E5,(i,j),t(w) holds automatically for w= 0 (i.e., P(E5,(i,j),t(0)) = 1), we will

discuss the remaining cases where w ≥ 1. As the optimal decision set Πt only contains arms in the optimal

decision subset Ko, from Proposition 6, for t≥ T0, we have the following inequality for k ∈Ko:

P

(
∥∆k∥1 ≥

128sζ

p∗κ
+

128sρwhole
Sk/Sk

1,t

p∗κ
λ2,t

)
≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
− tζ2

2σ2x2
max

)
. (EC.92)

Combining (EC.92) and the choice of T0 (i.e., T0 ≥max

{(
512sλ2,0

p∗κ

)2
logd,3

(
512sλ2,0

p∗κ

)2
log
(

512sλ2,0

p∗κ

)2}
), we

can ensure maxi ∥∆i∥1 ≤ 1 for all i∈Ko with high probability for t > T0. To see, note that by setting ζ = λ2,t

and using the fact that ρwhole
Sk/Sk

1,t
≤ 1, we can show that (EC.92) implies

P

(
∥∆k∥1 ≥

256sλ2,t

p∗κ

)
≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
−

tλ2
2,t

2σ2x2
max

)
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⇒P

(
∥∆k∥1 ≥

256sλ2,0

p∗κ

√
logd+ log t

t

)
≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
−

tλ2
2,t

2σ2x2
max

)

⇒P

(
∥∆k∥1 ≥

256sλ2,0

p∗κ

(√
logd

t
+

√
log t

t

))
≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
−

tλ2
2,t

2σ2x2
max

)
⇒P (∥∆k∥1 ≥ 1)≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
−

tλ2
2,t

2σ2x2
max

)
, (EC.93)

where (EC.93) uses the facts that
256sλ2,0

p∗κ

√
log d

t
≤ 1

2
(because t > T0 ≥

(
512sλ2,0

p∗κ

)2
logd) and

256sλ2,0

p∗κ

√
log t

t
≤

1
2
(by setting α=

(
p∗κ

512sλ2,0

)2
and then using Lemma EC.4 on t for t > T0 ≥ 3

(
512sλ2,0

p∗κ

)2
log
(

512sλ2,0

p∗κ

)2
).

We then consider the case with upper bound wδt
2Rmaxσeσxmaxxmax

instead of 1 on ∥∆k∥1. If we set ζ =

Cρs
−1wδt, where Cρ = p∗κ

256Rmaxσeσxmaxxmax(1+ρmax)
, δt = Cρ1s

√
log t+log d

t
, and Cρ1 =

512Rmaxσeσxmaxxmaxλ2,0

p∗κ
,

then we can show that the right-hand-side within the P(·) term in (EC.92) can be upper bounded as follows:

128sζ

p∗κ
+

128sρwhole
Sk/Sk

1,t

p∗κ
λ2,t ≤

128sζ

p∗κ
+

128sρmax

p∗κ
λ2,t

=
128sCρs

−1wCρ1s
√

(log t+ logd)/t

p∗κ
+

128sρmax

p∗κ
λ2,t

=
128sw

p∗κ
· 2

1+ ρmax

·λ2,0

√
log t+ logd

t
+

128sρmax

p∗κ
·λ2,0

√
log t+ logd

t

=
128

p∗κ

(
2w

1+ ρmax

+ ρmax

)
·λ2,0 · s

√
log t+ logd

t

=
128

p∗κ

(
2w

1+ ρmax

+ ρmax

)
·λ2,0 ·C−1

ρ1
· δt

=

(
1

1+ ρmax

+
ρmax

2w

)
· wδt
2Rmaxσeσxmaxxmax

Note that 1
1+ρmax

+ ρmax

2w
, where ρmax ∈ [0,1] and w≥ 1, can be upper bounded by 1. To see, we first take the

derivative of 1
1+ρmax

+ ρmax

2w
w.r.t ρmax to have − 1

(1+ρmax)2
+ 1

2w
. If w≥ 2, then − 1

(1+ρmax)2
+ 1

2w
is non-positive

for ρmax ∈ [0,1], which means that ρmax = 0 is the maximizer for 1
1+ρmax

+ ρmax

2w
, which gives the maximum

value of 1; if 1≤w< 2, then − 1
(1+ρmax)2

+ 1
2w

will be first negative and then positive for ρmax ∈ [0,1], which

means that 1
1+ρmax

+ ρmax

2w
will be maximized at either ρmax = 0 or ρmax = 1, both of which give the maximum

value of 1. Therefore, 1
1+ρmax

+ ρmax

2w
is upper bounded by 1, which implies that

128sζ

p∗κ
+

128sρwhole
Sk/Sk

1,t

p∗κ
λ2,t ≤

wδt
2Rmaxσeσxmaxxmax

. (EC.94)

Then, using (EC.93) and (EC.94) for both ∥∆j∥1 and ∥∆i∥1 for w≥ 1, we will have that for w≥ 1,

P(E5,(i,j),t(w))≤min

{
1,10δ0(t, t0)+

20

(t+1)2
+max

{
4s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

)
,4s exp

(
−

tλ2
2,t

2σ2x2
max

)}}
≤min

{
1,10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

)
+4s exp

(
−

tλ2
2,t

2σ2x2
max

)}
. (EC.95)

Note that (EC.95) also holds for the case when w= 0, as we have P(E5,(i,j),t(0)) = 1 and 10δ0(t, t0)+
20

(t+1)2
+

4s exp
(
− C2

ρtw
2δ2t

2s2σ2x2
max

)
≥ 4s exp

(
− C2

ρtw
2δ2t

2s2σ2x2
max

)
= 4s > 1.
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Furthermore, by assumption A.2, we have

P(E(t,w, δt)4,j)≤CRmax(1+w)δt. (EC.96)

Hence, via (EC.91), (EC.95), and (EC.96), we can show that

(∗)≤
∑
j ̸=i

P(E5,(i,j),t(w))P(E(t,w, δt)4,j)

≤
∑
j ̸=i

min

{
1,10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

)
+4s exp

(
−

tλ2
2,t

2σ2x2
max

)}
·CRmax(1+w)δt.

Accordingly, the regret bound at time t can be rewritten as follows:

regrett ≤
w1,t∑
w=0

(w+1)δt

(∑
j ̸=i

min

{
1,10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

)
+4s exp

(
−

tλ2
2,t

2σ2x2
max

)}
·CRmax(1+w)δt

)
≤CRmax|K|

w1,t∑
w=0

(w+1)2δ2t

(
10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−

tλ2
2,t

2σ2x2
max

)
+min

{
1,4s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

)})

≤CRmax|K|


(a)︷ ︸︸ ︷(

10δ0(t, t0)+
20

(t+1)2
+4s exp

(
−

tλ2
2,t

2σ2x2
max

)) w1,t∑
w=0

(1+w)2δ2t +

(b)︷ ︸︸ ︷
w0,t∑
w=0

(1+w)2δ2t

+

(c)︷ ︸︸ ︷
w1,t∑

w=w0,t+1

4(1+w)2δ2t s exp

(
−

C2
ρ tw

2δ2t
2s2σ2x2

max

) ,

(EC.97)

where w0,t =
⌊√

2 log(4s)s2σ2x2
max

C2
ρtδ

2
t

⌋
. Next, we will bound part (a), (b) and (c) separately:

(a)<

(
10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−

tλ2
2,t

2σ2x2
max

))
(1+w1,t)(1+w1,t)

2δ2t

=

(
10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−λ2

2,0

logd+ log t

2σ2x2
max

))
(1+w1,t)(1+w1,t)

2δ2t

=

(
10δ0(t, t0)+

20

(t+1)2
+4s exp

(
−8

(p∗κa)2

(p∗κa− 288s)2
(logd+ log t)

))
(1+w1,t)(1+w1,t)

2δ2t

=

(
10δ0(t, t0)+

20

(t+1)2
+4s exp (−32(logd+ log t))

)
(1+w1,t)(1+w1,t)

2δ2t

≤
(
10δ0(t, t0)+

24

(t+1)2

)
δ2t (1+w1,t)

3 (EC.98)

≤
(
10δ0(t, t0)+

24

(t+1)2

)
δ2t

(
1+

Rmax

δt
+1

)3

≤
(
10δ0(t, t0)+

24

(t+1)2

)
(3Rmax)

3δ−1
t (EC.99)

≤ 540R3
max(t0 +1)4

e4(t+1)4δt
+

648R3
max

(t+1)2δt
, (EC.100)
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where (EC.98) uses s ≤ d and t2 ≥ t+ 1 when t ≥ 1, and (EC.99) uses Rmax

δt
≥ 1 for t ≥ T0, which can be

shown in the following analysis

δt =Cρ1s

√
logd+ log t

t

≤Cρ1s

√
logd+ logT0

T0

≤Cρ1s

√
logd

T0

+Cρ1s

√
logT0

T0

≤ 512Rmaxσe
σxmaxxmaxλ2,0

p∗κ
s

√
logd

T0

+
512Rmaxσe

σxmaxxmaxλ2,0

p∗κ
s

√
logT0

T0

≤ Rmax

2
+

512Rmaxσe
σxmaxxmaxλ2,0

p∗κ
s

√
logT0

T0

(EC.101)

≤ Rmax

2
+

512Rmaxσe
σxmaxxmaxλ2,0

p∗κ
s

(
p∗κ

1024σeσxmaxxmaxsλ2,0

)
(EC.102)

≤ 1

2
Rmax +

1

2
Rmax =Rmax,

where (EC.101) uses the fact that T0 ≥ (
1024σeσxmaxxmaxsλ2,0

p∗κ
)2 logd and (EC.102) uses Lemma EC.4 (by using

the fact that T0 ≥ 3
(

1024σeσxmaxxmaxsλ2,0

p∗κ

)2
log
(

1024σeσxmaxxmaxsλ2,0

p∗κ

)2
and setting α=

(
p∗κ

1024σeσxmaxxmaxsλ2,0

)2
to show αT0 ≥ logT0). Next, we can further upper bound part (b) and part (c) in (EC.97) as follows:

(b)< (1+w0,t)(1+w0,t)
2δ2t = (1+w0,t)

3δ2t . (EC.103)

(c)≤ 16sδ2t

w1,t∑
w=w0,t+1

w2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)

≤ 16sδ2t

(w0,t +1)2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

· (w0,t +1)2
)

︸ ︷︷ ︸
(c1)

+

w1,t∑
w=w0,t+2

w2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)
︸ ︷︷ ︸

(c2)

 .

(EC.104)

Let’s consider (c1) and (c2), separately. As w0,t =
⌊√

2 log(4s)s2σ2x2
max

C2
ρtδ

2
t

⌋
, we have

√
2 log(4s)s2σ2x2

max

C2
ρtδ

2
t

≤w0,t +1,

which implies

C2
ρ tδ

2
t

2s2σ2x2
max

· (w0,t +1)2 ≥
C2

ρ tδ
2
t

2s2σ2x2
max

·

(√
2 log(4s)s2σ2x2

max

C2
ρ tδ

2
t

)2

= log(4s)> 1. (EC.105)

Combining (EC.105) with the fact that the function x exp(−x) is monotonically decreasing for x≥ 1, we can

show that

C2
ρ tδ

2
t

2s2σ2x2
max

(w0,t +1)2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

(w0,t +1)2
)
≤ log(4s) exp(− log 4s) =

log(4s)

4s

⇒(c1) = (w0,t +1)2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

(w0,t +1)2
)
≤ sσ2x2

max log(4s)

2C2
ρ tδ

2
t

. (EC.106)
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Similarly, as the function x2 exp(−x2) is monotonically decreasing for x≥ 1, we can upper bound the (c2)

term as follows:

(c2) =

w1,t∑
w=w0,t+2

w2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)

≤
∫ ∞

w0,t+1

w2 exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)
dw

=

∫ w=∞

w=w0,t+1

−s2σ2x2
max

C2
ρ tδ

2
t

·w · d
[
exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)]
=

s2σ2x2
max

C2
ρ tδ

2
t

· (w0,t +1)exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

· (w0,t +1)2
)
+

s2σ2x2
max

C2
ρ tδ

2
t

∫ ∞

w0,t+1

exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)
dw

(EC.107)

≤ s2σ2x2
max

C2
ρ tδ

2
t

(
w0,t +1

4s
+

∫ +∞

w0,t+1

w

w0,t +1
exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

·w2

)
dw

)
(EC.108)

=
s2σ2x2

max

C2
ρ tδ

2
t

(
w0,t +1

4s
+

1

w0,t +1

s2σ2x2
max

C2
ρ tδ

2
t

exp

(
−

C2
ρ tδ

2
t

2s2σ2x2
max

· (w0,t +1)2
))

≤ sσ2x2
max

C2
ρ tδ

2
t

(
w0,t +1

4s
+

s2σ2x2
max

C2
ρ tδ

2
t

· 1

4s

)
=

σ2x2
max

4C2
ρ tδ

2
t

(
w0,t +1+

s2σ2x2
max

C2
ρ tδ

2
t

)
, (EC.109)

where (EC.107) uses the integration by parts and (EC.108) uses (EC.105) and w≥w0,t +1≥ 1. Combining

(EC.104), (EC.106), and (EC.109), we have

(c)≤ 16sδ2t

(
s log(4s)σ2x2

max

2C2
ρ tδ

2
t

+
σ2x2

max

4C2
ρ tδ

2
t

(
w0,t +1+

s2σ2x2
max

C2
ρ tδ

2
t

))
=

4sσ2x2
max

C2
ρ t

(
2s log(4s)+w0,t +1+

s2σ2x2
max

C2
ρ tδ

2
t

)
. (EC.110)

Then, combining (EC.97), (EC.100), and (EC.103), (EC.110) with δt =Cρ1s
√

log t+log d

t
, we can show that

regrett ≤CRmax|K|
(
540R3

max(t0 +1)4

e4(t+1)4δt
+

648R3
max

(t+1)2δt
+(1+w0,t)

3δ2t +
4sσ2x2

max

C2
ρ t

(
2s log(4s)+w0,t +1+

s2σ2x2
max

C2
ρ tδ

2
t

))

=CRmax|K|

 540R3
max(t0 +1)4

e4(t+1)4 ·Cρ1s
√

log t+log d

t

+
648R3

max

(t+1)2 ·Cρ1s
√

log t+log d

t

+
(1+w0,t)

3 ·C2
ρ1
s2(log t+ logd)

t

+
4sσ2x2

max

C2
ρ t

(
2s log(4s)+w0,t +1+

s2σ2x2
max

C2
ρ tC

2
ρ1
s2( log d+log t

t
)

))

≤CRmax|K|
(
540R3

max(t0 +1)4

e4Cρ1s
√
logd

· t1/2

(t+1)4
+

648R3
max

Cρ1s
√
logd

· t1/2

(t+1)2
+

(1+w0,t)
3 ·C2

ρ1
s2(log t+ logd)

t

+
4sσ2x2

max

C2
ρ t

(
2s log(4s)+w0,t +1+

σ2x2
max

C2
ρC

2
ρ1
logd

))
≤CRmax|K|

(
540R3

max(t0 +1)4

e4Cρ1s
√
logd

· t
1/2

t4
+

648R3
max

Cρ1s
√
logd

· t1/2

t3/2 ·
√
T0 +1

+
(1+w0,t)

3C2
ρ1
· s2(log t+ logd)

t

+
4sσ2x2

max

C2
ρ t

(
2s log(4s)+w0,t +1+

σ2x2
max

C2
ρC

2
ρ1
logd
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≤Rmax|K|
(
540CR3

max(t0 +1)4

e4Cρ1s(log
1/2 d)t7/2

+
C3 +CC2

ρ1
(1+w0,t)

3s2 log t

t

)
, (EC.111)

where

C3 =
648CR3

max

Cρ1s(log
1/2 d)

√
T0 +1

+CC2
ρ1
(1+w0,t)

3s2 logd+
4Csσ2x2

max

C2
ρ

(
2s log(4s)+w0,t +1+

σ2x2
max

C2
ρC

2
ρ1
logd

)
.

(EC.112)

Hence, the third part of the regret can be bounded as follows:

R3(T )≤
T∑

t=T0+1

regrett ·P(E2(t))

≤
T∑

t=T0+1

Rmax|K|
(
540CR3

max(t0 +1)4

e4Cρ1s log
1/2 dt7/2

+
C3 +CC2

ρ1
(1+maxt≤T w0,t)

3s2 log t

t

)
≤
∫ T

T0

Rmax|K|
(
540CR3

max(t0 +1)4

e4Cρ1s log
1/2 dt7/2

+
C3 +CC2

ρ1
(1+maxt≤T w0,t)

3s2 log t

t

)
dt

≤Rmax|K|
(
− 1080CR3

max(t0 +1)4

5e4Cρ1s(log
1/2 d)t5/2

+C3 log t+CC2
ρ1
(1+max

t≤T
w0,t)

3s2 log2 t

)∣∣∣∣T
T0

≤Rmax|K|
(

1080CR3
max(t0 +1)4

5e4Cρ1s(log
1/2 d)(T0)5/2

+C3 logT +CC2
ρ1
(1+max

t≤T
w0,t)

3s2 log2 T

)
≤Rmax|K|

(
C4(t0 +1)+C3 logT +C5 log

2 T
)

≤Rmax|K|
(
2C4T0 +C3 logT +C5 log

2 T
)
, (EC.113)

where we set

C4 =
216CR3

max(t0 +1)3

e4Cρ1s(log
1/2 d)(T0)5/2

(EC.114)

C5 =CC2
ρ1
(1+max

t≤T
w0,t)

3s2 (EC.115)

and t0 ≤ T0. As we set t0 = 2C0|K| and C0 = O(s2 logd), which implies C4 = O(1). Moreover, as w0,t =⌊√
2s2 log(4s)σ2x2

max

C2
ρtδ

2
t

⌋
≤
⌊√

log(4s)σ2x2
max

2λ2
2,0 log d

⌋
=O(1) and Cρ =O((1 + ρmax)

−1), we can directly show that C3 ≤

Õ((1+ ρmax)
2s2 logd) and C5 =O(s2).

Next, we consider the other case where T > T1. Via proposition 6, we know that when T > T1, for all

k ∈K, Sk
1,t = Sk ⇒ ρSk/Sk

1,t
= 0. In this case, we can restate (EC.92) as follows

P

(
∥∆k∥1 ≥

128sζ

p∗κ

)
≤ 5δ0(t, t0)+

10

(t+1)2
+2s exp

(
− tζ2

2σ2x2
max

)
.

Then, by setting ζ =Cρs
−1wδt, via the similar analysis to (EC.94), we can show

128sζ

p∗κ
=

128s

p∗κ
· p∗κ

256Rmaxσeσxmaxxmax(1+ ρmax)
· s−1wδt

=
1

1+ ρmax

· wδt
2Rmaxσeσxmaxxmax

≤ wδt
2Rmaxσeσxmaxxmax

,

which implies that (EC.95) still holds and we have the same separation as in (EC.97). The analyses for parts

(a), (b), and (c) remain unchanged. As we choose δt =Cρ1s
√

log d

t
, which is different from the choice in the
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T ≤ T1 case where δt =Cρ1s
√

log d+log t

t
, the regrett calculation will be slightly different from the analysis for

(EC.111). In particular, we can show that

regrett ≤CRmax|K|
(
540R3

max(t0 +1)4

e4(t+1)4δt
+

540R3
max

(t+1)2δt
+(1+w0,t)

3δ2t +
4sσ2x2
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ρ t

(
2s log(4s)+w0,t +1+

s2σ2x2
max

C2
ρ tδ

2
t

))

=CRmax|K|

 540R3
max(t0 +1)4

e4(t+1)4 ·Cρ1s
√

log d

t

+
540R3

max

(t+1)2 ·Cρ1s
√

log d

t

+
(1+w0,t)

3 ·C2
ρ1
s2logd

t

+
4sσ2x2

max

C2
ρ t

(
2s log(4s)+w0,t +1+

s2σ2x2
max

C2
ρ tC

2
ρ1
s2( log d

t
)

))

≤Rmax|K|

 540CR3
max(t0 +1)4

e4Cρ1s(log
1/2 d)t7/2

+
C3 +CC2

ρ1
(1+w0,t)

3s2

t︸ ︷︷ ︸
(d)

 . (EC.116)

When comparing (EC.111) to (EC.116), we can show that the log t term disappeared in the (d) term.

Therefore, following similar analysis as in (EC.113), the third part of the regret, when T > T1, can be upper

bounded as follows:

R3(T )≤Rmax|K|(2C4T0 +(C3 +C5) logT +C5 log
2 T1).

Finally, the total regret bound can be obtained by combining the bounds from all three parts: when

T ≤ T1, we have

R1(T )+R2(T )+R3(T )≤ 3C0Rmax|K| logT +5Rmax|K|T0 +2Rmax|K|T0 +Rmax|K|(2C4T0 +C3 logT +C5 log
2 T )

=Rmax|K|
[
(3C0 +C3) logT +C5 log

2 T +(7+2C4)T0

]
= Õ(s2(logd+ logT ) logT );

when T > T1, we have

R1(T )+R2(T )+R3(T )

≤ 3C0Rmax|K| logT +5Rmax|K|T0 +2Rmax|K|T0 +Rmax|K|(2C4T0 +(C3 +C5) logT +C5 log
2 T1)

=Rmax|K|
[
(3C0 +C3 +C5) logT +(7+2C4)T0 +C5 log

2 T1

]
= Õ(s2 logd logT ).

Proof of Theorem 2 We adopt the FISTA method in Beck and Teboulle (2009) as the Lasso solver in

the 2sWL procedure. For completeness, we first present the FISTA method in our settings.

FISTA Method:
Require: Loss function L(β), penalty parameter λ, total iteration number k0 ≥ 1,

initial solution β0, and step-size l0.
Step 0: Set y1 =β0, t1 = 1, and k= 1.
While k≤ k0:

βk = argminβ

{
λ∥β∥1 + l0

2

∥∥∥β−
(
yk − 1

l0
∇L(yk)

)∥∥∥2
2

}
(∗)

tk+1 =
1+

√
1+4t2

k

2

yk+1 =βk +
tk−1
tk+1

· (βk −βk−1)

k= k+1
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The major computation cost in FISTA is from part (∗), in which we need the full gradient ∇L(yk). By

definition, we have L(β) = 1
n

∑n

j=1 f(Rj |XT
j β). Hence, to evaluate each ∇L(yk), we need to compute O(dn)

scalers multiplication. Let β∗ be the optimal solution, β0 be the initial solution, and the Theorem 4.4 in

Beck and Teboulle (2009) implies that for any k≥ 1

L(βk)+λ∥βk∥1 −L(β∗)+λ∥β∗∥1 ≤O
(
L∥β0 −β∗∥22

(k+1)2

)
, (EC.117)

where L is the Lipschitz constant of L(β) function and will be on the order of O(xmaxbd). Therefore, to

achieve ϵ-optimal solution, the required total iterations k0 will be on the order of O(xmaxb∥β0−β∗∥22ϵ−1/2) =

O(xmaxb
3ϵ−1/2), where we use ∥β0 − β∗∥22 ≤ 4b2d2 by using ∥β∥1 ≤ b for all feasible β in assumption A.1.

Therefore, the total computational cost for running FISTA becomes O(xmaxb
3dnϵ−1/2). Note that at step

T , each arm can not be pulled more than T times, so the maximum computation cost of FISTA will be

O(xmaxb
3d4Tϵ−1/2).

Next, we will upper bound the total number of the FISTA method called by time T . At each step, the

G-MCP-Bandit algorithm will require to update βrandom
k and βwhole

k by 2sWL for k ∈ K and each 2sWL

procedure will need to run FISTA two times. So the average computation cost will be

Average computation cost≤O

(
1

T
·
∑
k∈K

T∑
t=1

2xmaxb
3dtϵ−1/2

)
=O(|K|xmaxb

3d4Tϵ−1/2). (EC.118)

Next, we consider the long-run computation cost. We can reduce the computation cost with a warm start

from the previous step. Via Proposition 3, we can show that with high probability, for T ≥max{T1, t
2
0} and

ζ = ϵ2p∗κ
16s

, the following inequality holds:

P

(
∥βMCP −βtrue∥1 ≤ ϵ

1
4

)
≥ 1− 10

(T +1)2
− 2exp

(
− (T +1)(ϵ1/4p∗κ)2

512s2σ2x2
max

+ log s

)
. (EC.119)

Moreover, when T ≥ max
{

1024s2 log(s)σ2x2
max

ϵ1/2(p∗κ)2
,
6144s2σ2x2

max

ϵ1/2(p∗κ)2
log
(

2048s2σ2x2
max

ϵ1/2(p∗κ)2

)}
= O(s2 log(s)ϵ−1/2), via

Lemma EC.4, we have

(T +1)ϵ1/2(p∗κ)2

1024s2σ2x2
max

≥ log(s) and
(T +1)ϵ1/2(p∗κ)2

1024s2σ2x2
max

≥ 2 log(T +1)

⇒2exp

(
− (T +1)(ϵ1/4p∗κ)2

512s2σ2x2
max

+ log s

)
≤ 1

(T +1)2
. (EC.120)

Combining (EC.119) and (EC.120), we have

P
(
∥βMCP −βtrue∥1 ≤ ϵ1/4

)
≥ 1−O(T−2) (EC.121)

and via Proposition 5 and Lemma EC.2 in E-Companion, we can show that for T ≥O(s2 logdϵ−1/2), similar

result holds

P(∥βlasso −βtrue∥1 ≤ ϵ1/4)≥ 1−O(T−2). (EC.122)

Note that (EC.121) and (EC.122) imply that for large enough T , both previous step solution and current

step solution are close to βtrue with high probability. If we use the previous step solution to initialize the

FISTA algorithm, then we have

∥β0 −β∗∥22 ≤ ∥β0 −β∗∥21 = ∥β0 −βtrue +βtrue −β∗∥21
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≤ 2∥β0 −βtrue∥21 +2∥β∗ −βtrue∥21

≤ 4ϵ1/2, (EC.123)

where the first inequality uses (a+ b)2 ≤ 2a2 +2b2, and the last inequality is because β0 is initialized with

previous step’s solution and β∗ is the current step’s MCP solution. Therefore, the results in (EC.118) can

be improved to O(|K|xmaxbd
2T ).
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EC.2. Appendix: Supplemental Lemmas and Proofs

Lemma EC.1. Let n be the size of the whole sample set and A be the random i.i.d. sample set consisting

of X ∈Rd for k ∈Ks and X ∈Uk for k ∈Ko. Under assumptions A.1, A.4, and A.5, when |A| ≥C−1
1 logd,

the follow inequality holds for all feasible ξ and u such that ∥uSc∥1 ≤ 3∥uS∥1:

P

(
|A|κ
2ns

∥uS∥21 ≤u⊤∇2L(ξ)u
)
≥ 1− exp(−C1|A|), (EC.124)

where

C1 =min
{
1, κ2/

(
192sσ2x

2
max(2+

√
σ2xmax)

)2}
. (EC.125)

Proof of EC.1 Let LA(β) be the loss function with the sample set A. Denote Zj =Xj

√
f ′′
yy(Rj |X⊤

j ξ),

where we replace r and y in f ′′
yy(r|y) by Rj and X⊤

j ξ respectively. We then can present ∇2LA(ξ) as follows:

∇2LA(ξ) =
1

|A|
∑
j∈A

XjX
⊤
j f

′′

yy(Rj |X⊤
j ξ) =

1

|A|
∑
j∈A

ZjZ
⊤
j .

As all realization of X is element-wise bounded by xmax (see assumption A.1) and f
′′

yy(rj |x⊤
j ξ) ≤ σ2 (see

assumptions A.4), Zj is element-wise bounded by ∥Zj∥∞ =
∥∥∥Xj

√
f ′′
yy(Rj |X⊤

j ξ)
∥∥∥
∞
≤√

σ2xmax
.
= zmax. Then,

we use Bühlmann and Van De Geer (2011) to build the connection between the sample matrix 1
|A|

∑
j∈AZjZ

⊤
j

and its population counterpart EZ [ZjZ
⊤
j ]. By setting K = zmax and σ0 =

√
2zmax in the exercise 14.3 in

Bühlmann and Van De Geer (2011), for t > 0, we have

P


∥∥∥∥∥ 1

|A|
∑
j∈A

ZjZ
⊤
j −EZ [ZjZ

⊤
j ]

∥∥∥∥∥
∞

≥ 2z2maxt+4z2max

√
t+

√
8z2maxλ

(√
2

2
, |A|,

(
d

2

))≤ exp (−|A|t) ,

(EC.126)

where λ
(√

2
2
, |A|,

(
d

2

))
=
√

2 log(d(d−1))

|A| + zmax log(d(d−1))

|A| .

When |A| ≥C−1
1 logd and t=C1 in (EC.126), the following inequalities hold:

2z2maxt+4z2max

√
t= 2z2maxC1 +4z2max

√
C1

≤ 6z2max

√
C1 (EC.127)

√
8z2maxλ

(√
2

2
, |A|,

(
d

2

))
≤
√
8z2max

(√
2 log(d2)

|A|
+

zmax log(d
2)

|A|

)

=
√
8z2max

(√
4 logd

|A|
+

2zmax logd

|A|

)
≤
√
8z2max

(
2
√

C1 +2zmaxC1

)
≤ 4

√
2z2max(1+ zmax)

√
C1, (EC.128)

where in (EC.127) and (EC.128) we use the fact that when C1 ≤ 1, we have
√
C1 ≥C1. Combining (EC.127)

and (EC.128), we have

2z2maxt+4z2max

√
t+

√
8z2maxλ

(√
2

2
, |A|,

(
d

2

))
≤ 2z2max

(
3+2

√
2(1+ zmax)

)√
C1

< 6z2max (2+ zmax))
√

C1 ≤
κ

32s
, (EC.129)
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where (EC.129) uses
√
2≤ 3

2
and C1 ≤ κ2/

(
192sσ2x

2
max

(
2+

√
σ2xmax

))2
. Combining (EC.126) and (EC.129),

we have

P


∥∥∥∥∥ 1

|A|
∑
j∈A

ZjZ
⊤
j −EZ [ZjZ

⊤
j ]

∥∥∥∥∥
∞

≤ κ

32s

≥ 1− exp (−C1|A|) . (EC.130)

By the definition of Zj , we can verify that EZ [ZjZ
⊤
j ] =EX,ϵ[f

′′

yy(Rj |ξ⊤Xj)XjX
⊤
j ]. Via assumption A.5, we

have restricted eigenvalue condition holds for EZ [ZjZ
⊤
j ] with parameter κ. Combining (EC.130) with the

Corollary 6.8 in Bühlmann and Van De Geer (2011), we set λ̃= κ
32s

in Corollary 6.8 to show 1
|A|

∑
j∈AZjZ

⊤
j

also has restricted eigenvalue condition with parameter κ/2, which implies

P

(
κ

2s
∥uS∥21 ≤

1

|A|
∑
j∈A

ZjZ
⊤
j

)
≥ 1− exp(−C1|A|)

⇒P
( κ

2s
∥uS∥21 ≤u⊤∇2LA(ξ)u

)
≥ 1− exp(−C1|A|). (EC.131)

Note that for any realizations {xj , rj} of {Xj ,Rj}, we have

uT∇2LA(ξ)u=uT

[
1

n

∑
j∈A

xjx
⊤
j f

′′
yy(rj |xT

j ξ)

]
u+uT

 1

n

∑
j∈(A)c

xjx
⊤
j f

′′
yy(rj |xT

j ξ)

u
≥uT

[
1

n

∑
j∈A

xjx
⊤
j f

′′
yy(rj |xT

j ξ)

]
u=

|A|
n

u⊤∇2LA(ξ)u. (EC.132)

The desirable result follows directly by combining (EC.131) and (EC.132).

Lemma EC.2. Let n be the size of the whole sample set and A be the random i.i.d. sample set consisting

of X ∈Rd for k ∈Ks and X ∈Uk for k ∈Ko. Per assumptions A.1, A.4 and A.5, when |A| ≥C−1
1 logd, the

follow result holds with probability at least 1− exp (−C1|A|)− 2d exp
(
− nλ2

8σ2x2
max

)
:

∥βlasso −βtrue∥1 ≤
24nsλ

|A|κ
, (EC.133)

where βlasso is the lasso estimator and C1 is defined in (EC.125)

Proof of lemma EC.2 We first show that ∥βlasso
Sc − βtrue

Sc ∥1 ≤ 3∥βlasso
S − βtrue

S ∥1 holds. As βlasso is the

optimal solution, we have

L(βlasso)+λ∥βlasso∥1 ≤L(βtrue)+λ∥βtrue∥1

L(βlasso)−L(βtrue)+λ∥βlasso∥1 ≤ λ∥βtrue∥1 (EC.134)

∇L(βtrue)T (βlasso −βtrue)+λ∥βlasso∥1 ≤ λ∥βtrue∥1 (EC.135)

−∥∇L(βtrue)∥∞∥βlasso −βtrue∥1 +λ∥βlasso∥1 ≤ λ∥βtrue∥1, (EC.136)

where (EC.135) uses the convexity of L(βlasso). Denote event E0 as follows:

E0 =
{
∥∇L(βtrue)∥∞ <

1

2
λ

}
. (EC.137)
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Under E0, (EC.136) can be further simplified into

−1

2
λ∥βlasso −βtrue∥1 +λ∥βlasso∥1 ≤ λ∥βtrue∥1

−1

2
∥βlasso −βtrue∥1 + ∥βlasso∥1 ≤ ∥βtrue∥1

−1

2
∥βlasso

S −βtrue
S ∥1 −

1

2
∥βlasso

Sc −βtrue
Sc ∥1 + ∥βlasso

S ∥1 + ∥βlasso
Sc ∥1 ≤ ∥βtrue

S ∥1 + ∥βtrue
Sc ∥1. (EC.138)

As βtrue
Sc = 0 by definition, we then have

−1

2
∥βlasso

S −βtrue
S ∥1 −

1

2
∥βlasso

Sc −βtrue
Sc ∥1 + ∥βlasso

S ∥1 + ∥βlasso
Sc −0∥1 ≤ ∥βtrue

S ∥1 +0

−1

2
∥βlasso

S −βtrue
S ∥1 −

1

2
∥βlasso

Sc −βtrue
Sc ∥1 + ∥βlasso

S ∥1 + ∥βlasso
Sc −βtrue

Sc ∥1 ≤ ∥βtrue
S ∥1 +0

1

2
∥βlasso

Sc −βtrue
Sc ∥1 ≤

1

2
∥βlasso

S −βtrue
S ∥1 + ∥βtrue

S ∥1 −∥βlasso
S ∥1

∥βlasso
Sc −βtrue

Sc ∥1 ≤ 3∥βlasso
S −βtrue

S ∥1 (EC.139)

Then, by Lemma EC.1, we obtain

P

(
(βlasso −βtrue)⊤∇2L(ξ)(βlasso −βtrue)≥ |A|κ

2ns
∥βlasso

S −βtrue
S ∥21

)
≥ 1− exp (−C1|A|) . (EC.140)

Now, we turn back to (EC.134) and use the Taylor expansion on L(βlasso) at βtrue. Then, the following

inequality holds for some ξ between βtrue and βlasso:

∇L(βtrue)⊤(βlasso −βtrue)+
1

2
(βlasso −βtrue)⊤∇2L(ξ)(βlasso −βtrue)+λ∥βlasso∥1 ≤ λ∥βtrue∥1. (EC.141)

Combining (EC.140) and (EC.141), we know that with probability at least 1− exp(−C1n), the following

results hold:

|A|κ
4ns

∥βlasso
S −βtrue

S ∥21 ≤−∇L(βtrue)⊤(βlasso −βtrue)+λ
(
∥βtrue∥1 −∥βlasso∥1

)
|A|κ
4ns

∥βlasso
S −βtrue

S ∥21 ≤
∑

i∈S∪Sc

[
−∇iL(βtrue)(βlasso

i −βtrue
i )+λ

(
|βtrue

i | − |βlasso
i |

)]
. (EC.142)

We then separately consider i∈ S and i∈ Sc as follow:∑
i∈S

[
−∇iL(βtrue)(βlasso

i −βtrue
i )−λ

(
|βlasso

i | − |βtrue
i )|

)]
≤
∥∥∇SL(βtrue)

∥∥
∞

∥∥βlasso
S −βtrue

S

∥∥
1
+λ

∥∥βlasso
S −βtrue

S

∥∥
1

(EC.143)

and ∑
i∈Sc

[
−∇iL(βtrue)(βlasso

i −βtrue
i )−λ

(
|βlasso

i | − |βtrue
i )|

)]
≤
∑
i∈Sc

[
−∇iL(βtrue)βlasso

i −λ|βlasso
i |

]
≤
∑
i∈Sc

(
|∇iL(βtrue)| −λ

)
|βlasso

i | ≤ 0, (EC.144)

where the last inequality uses ∥∇L(βtrue)∥∞ ≤ 1
2
λ in E0.
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Combining (EC.142), (EC.143) and (EC.144), we can show that

|A|κ
4ns

∥βlasso
S −βtrue

S ∥21 ≤
∥∥∇SL(βtrue)

∥∥
∞

∥∥βlasso
S −βtrue

S

∥∥
1
+λ

∥∥βlasso
S −βtrue

S

∥∥
1

|A|κ
4ns

∥βlasso
S −βtrue

S ∥1 ≤
∥∥∇SL(βtrue)

∥∥
∞ +λ

|A|κ
4ns

∥βlasso −βtrue∥1 ≤ 4
(∥∥∇SL(βtrue)

∥∥
∞ +λ

)
(EC.145)

∥βlasso −βtrue∥1 ≤
16ns

|A|κ
(∥∥∇SL(βtrue)

∥∥
∞ +λ

)
, (EC.146)

where (EC.145) uses ∥βlasso
Sc − βtrue

Sc ∥1 ≤ 3∥βlasso
S − βtrue

S ∥1 in (EC.139). Under event E0, (EC.146) can be

further reduced to:

∥βlasso −βtrue∥1 ≤
24ns

|A|κ
λ. (EC.147)

Now, we assess the probability of event E0. The i-th element of ∇L(βtrue) is 1
n

∑n

j=1Xj,if
′

y(Rj |X⊤
j βtrue).

Under assumptions A.1 and A.4, Xj,if
′

y(Rj |X⊤
j βtrue) are x2

maxσ
2-subguassian random variables for given

sample Xj . We can use the Hoeffding’s inequality and union bound to build the following probability bound.

P

(∣∣∣∣∣ 1n
n∑

j=1

Xj,if
′

y(Rj |X⊤
j βtrue)

∣∣∣∣∣≥ t

)
≤ 2exp

(
− nt2

2σ2x2
max

)

⇒P

(
max

i

∣∣∣∣∣ 1n
n∑

j=1

Xj,if
′

y(Rj |X⊤
j βtrue)

∣∣∣∣∣≤ t

)
≥ 1− 2d exp

(
− nt2

2σ2x2
max

)
, (EC.148)

Setting t= 1
2
λ, we will have event E0 defined in (EC.137) holds with at least probability 1−2d exp

(
− nλ2

8σ2x2
max

)
.

The desirable result directly follows by (EC.146), (EC.147), and (EC.148).

Lemma EC.3. Under assumptions A.1, A.3, A.4, and A.5, for any feasible x, βi and i∈K, the following

two statements hold.

1. |Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]| ≤Rmaxe

σxmax∥βi−βtrue
i ∥1σxmax∥βi −βtrue

i ∥1

2. Moreover, if ∥βi − βtrue
i ∥1 ≤ min

{
1

σxmax
, h
4eσRmaxxmax

}
, then we have Eϵ[Ri|x⊤βi] >

maxj ̸=iEϵ[Rj |x⊤βj ] +
h
2
for i∈Ko and Eϵ[Ri|x⊤βi]<maxj ̸=iEϵ[Rj |x⊤βj ]− 1

2
h for i∈Ks.

Proof of Lemma EC.3 To show the part 1. We first expand the left-hand-side as follows.∣∣Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]

∣∣
=

∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤βtrue
i )dri −

∫ +∞

−∞
rie

−f(ri|x⊤βi)dri

∣∣∣∣ (EC.149)

=

∣∣∣∣∫ +∞

−∞
ri

(
e−f(ri|x⊤βtrue

i ) − e−f(ri|x⊤βi)
)
dri

∣∣∣∣ .
=

∣∣∣∣∣
∫ +∞

−∞
−ri

(
e−f(ri|x⊤βi)

)′ ∣∣∣∣
βi=βtrue

i
+δ

x⊤(βi −βtrue
i )dri

∣∣∣∣∣ , (EC.150)
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where (EC.149) uses f being the sample-wise negative log-likelihood loss function and δ in (EC.150) is

between 0 and βi −βtrue
i . We then pull xT (βi −βtrue

i ) out of the integral:∣∣∣∣∣
∫ +∞

−∞
−ri

(
e−f(ri|x⊤βi)

)′∣∣∣∣
βi=βtrue

i
+δ

x⊤(βi −βtrue
i )dri

∣∣∣∣∣
=

∣∣∣∣∣x⊤(βi −βtrue
i )

∫ +∞

−∞
−ri

(
e−f(ri|x⊤βi)

)′ ∣∣∣∣
βi=βtrue

i
+δ

dri

∣∣∣∣∣
≤
∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤(βtrue
i +δ))f

′

y(ri|x⊤(βtrue
i + δ))dri

∣∣∣∣xmax∥βi −βtrue
i ∥1. (EC.151)

As we assume |f ′

y(·|·)| is bounded by σ in assumption A.4, (EC.151) is upper bounded by∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤(βtrue
i +δ))f

′

y(ri|x⊤(βtrue
i + δ))dri

∣∣∣∣xmax∥βi −βtrue
i ∥1

≤
∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤(βtrue
i +δ))dri

∣∣∣∣σxmax∥βi −βtrue
i ∥1. (EC.152)

We then expand term f(ri|x⊤(βtrue
i +δ)) in (EC.152), and there exists a ξ between βtrue and βtrue+δ such

that ∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤(βtrue
i +δ))dri

∣∣∣∣σxmax∥βi −βtrue
i ∥1

=

∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤βtrue
i )−f

′
y(ri|x

⊤ξ)x⊤δdri

∣∣∣∣σxmax∥βi −βtrue
j ∥1

≤
∣∣∣∣∫ +∞

−∞
rie

−f(ri|x⊤βtrue
i )+|f

′
y(ri|x

⊤ξ)|∥x∥∞∥δ∥1dri

∣∣∣∣σxmax∥βi −βtrue
i ∥1

≤
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−∞
rie

−f(ri|x⊤βtrue
i )dri

∣∣∣∣eσxmax∥βi−βtrue
i ∥1σxmax∥βi −βtrue

i ∥1 (EC.153)

=|Eϵ[Ri|x⊤βtrue
i ]|eσxmax∥βi−βtrue

i ∥1σxmax∥βi −βtrue
i ∥1 (EC.154)

where (EC.153) uses that δ is between 0 and βi −βtrue
i , which implies ∥δ∥1 ≤ ∥βi −βtrue

i ∥1, and (EC.154)

comes from the definition of Eϵ[Ri|x⊤βtrue
i ]. Combining Eϵ[Ri|x⊤βtrue

i ] ∈ (0,Rmax] in assumption A.1 and

(EC.154), we have:∣∣Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]

∣∣≤Rmaxe
σxmax∥βi−βtrue

i ∥1σxmax∥βi −βtrue
i ∥1. (EC.155)

To show the part 2. If ∥βi −βtrue
i ∥1 ≤ 1

σxmax
, then we can show that

eσxmax∥βi−βtrue
i ∥1 ≤ e. (EC.156)

Combining (EC.156) and (EC.155), we obtain∣∣Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]

∣∣≤Rmaxe
σxmax∥βi−βtrue

i ∥1σxmax∥βi −βtrue
i ∥1

≤Rmaxeσxmax∥βi −βtrue
i ∥1 (EC.157)

Let j1 = argmaxj ̸=iEϵ[Rj |x⊤βtrue
j ]. We first consider the case with i ∈ Ko. Under assumption A.3, for any

x∈Ui, i∈Ko, the following inequalities hold:

Eϵ[Ri|x⊤βtrue
i ]>Eϵ[Rj1 |x⊤βtrue

j1
] +h
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⇒Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]>Eϵ[Rj1 |x⊤βtrue

j1
]−Eϵ[Rj1 |x⊤βj1 ]

+Eϵ[Rj1 |x⊤βj1 ]−Eϵ[Ri|x⊤βi] +h

⇒Eϵ[Ri|x⊤βi]−Eϵ[Rj1 |x⊤βj1 ]>−
∣∣Eϵ[Ri|x⊤βi]−Eϵ[Ri|x⊤βtrue

i )]
∣∣

−
∣∣Eϵ[Rj1 |x⊤βtrue

j1
]−Eϵ[Rj1 |x⊤βj1 ]

∣∣+h. (EC.158)

If ∥βi −βtrue
i ∥1 ≤ h

4eσRmaxxmax
, then we have

∥Rmaxeσxmax(βi −βtrue
i )∥1 ≤

h

4
. (EC.159)

Combining (EC.157), (EC.158), and (EC.159), we will have

Eϵ[Ri|x⊤βi]−Eϵ[Rj1 |x⊤βj1 ]>−h

4
− h

4
+h

⇒Eϵ[Ri|x⊤βi]>max
j ̸=i

Eϵ[Rj |x⊤βj ] +
h

2
, (EC.160)

where the last inequality uses j1 = argmaxj ̸=iEϵ[Rj |x⊤βtrue
j ].

We then consider the case where i∈Ks. Under assumption A.3, for any suboptimal arm i∈Ks, we have

Eϵ[Ri|x⊤βtrue
i ] +h<Eϵ[Rj1 |x⊤βtrue

j1
]

⇒Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi] +h<Eϵ[Rj1 |x⊤βtrue

j1
]−Eϵ[Rj1 |x⊤βj1 ]

+Eϵ[Rj1 |x⊤βj1 ]−Eϵ[Ri|x⊤βi]

⇒Eϵ[Rj1 |x⊤βj1 ]−Eϵ[Ri|x⊤βi]>−|Eϵ[Ri|x⊤βtrue
i ]−Eϵ[Ri|x⊤βi]|

− |Eϵ[Rj1 |x⊤βtrue
j1

]−Eϵ[Rj1 |x⊤βj1 ]|+h

⇒Eϵ[Rj1 |x⊤βj1 ]−Eϵ[Ri|x⊤βi]>−1

4
h− 1

4
h+h

⇒Eϵ[Ri|x⊤βi]<Eϵ[Rj1 |x⊤βj1 ]−
1

2
h=max

j ̸=i
Eϵ[Rj |x⊤βj ]−

1

2
h,

where the second-to-last inequality uses (EC.157) and (EC.159).

Lemma EC.4. Let α be a positive number. When x>max{3α−1 logα−1,0}, we have αx≥ logx.

Proof of Lemma EC.4 Let f(x) = αx− logx. We first prove that for the case where α < e−1, f(x) is

non-negative for x>max{3α−1 logα−1,0} via solving the following equation:

αx− logx= 0⇔ exp(αx)

x
= 1⇔ x exp(−αx) = 1⇔−αx exp(−αx) =−α, (EC.161)

whose non-negative solution is x=−α−1W−1(−α) where W−1(·) is the Lambert W function. Combining this

result with the monotonicity of f(x), we have f(x)≥ 0 for all x≥−α−1W−1(−α). Next, we will show that

−α−1W−1(−α)≤max{3α−1 logα−1,0}. By setting u=− logα− 1 in Theorem 1 of Chatzigeorgiou (2013),

we have

W−1(−e−(− logα−1)−1)≥−1−
√
2(− logα− 1)− (− logα− 1)
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⇒W−1(−α)≥−
√

2(− logα− 1)+ logα

⇒W−1(−α)≥−2
√
− logα+ logα

⇒−α−1W−1(−α)≤ α−1(2
√
− logα− logα)

⇒−α−1W−1(−α)≤−3α−1 loga= 3α−1 logα−1 ≤max{3α−1 logα−1,0}, (EC.162)

where the last inequality uses − logα ≥ log e = 1 when α ≤ e−1. Therefore, we have f(x) ≥ 0 for all x ≥

max{3α−1 logα−1,0}.

Next, we consider the case where α ≥ e−1. We can verify that f(x) is convex with the minimum value

(1+ logα). If α ≥ e−1, then f(x) is non-negative, which implies that αx ≥ logx for all x > 0. Finally, the

lemma follows directly by combining both the α< e−1 case and the α≥ e−1 case.
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EC.3. Appendix: Sensitivity Analyses

In this section, we conduct sensitivity analyses for input parameters (i.e., a, λ1,0, λ2,0, h, t0) in the G-MCP-

Bandit algorithm and the upper-bound for significant covariates dimension (i.e., s). In particular, we will

hold the baseline case, where d= 50, s= 10, λ1 = λ2,0 = 1, h= 1, t0 = 4, a= 0.1, and k= 2, largely unchanged

while varying one of a ∈ {0.005,0.1,2}, λ= λ1 = λ2,0 ∈ {0.05,0.8,1}, h ∈ {0.25,0.5,2}, t0 ∈ {0.3,0.5,1}, and

s∈ {3,4,5}. For each sensitivity analysis, we perform 100 trials and report the average cumulative regret for

the G-MCP-Bandit algorithm up to 1000 users.

Figure EC.1 Sensitivity analysis, where d = 50, s = 10, λ1 = λ2,0 = 1, h = 1, t0 = 4, a = 0.1, and k = 2 as the

baseline.
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(a) Influence of a
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(b) Influence of λ1 = λ2,0 = λ

0 200 400 600 800 1000

# of Users

0

10

20

30

40

50

60

C
u

m
u

la
ti

v
e

 R
e
g

re
t

h=0.25

h=0.5

h=2

(c) Influence of h
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(d) Influence of t0
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(e) Influence of s

We observe that the cumulative regret for the G-MCP-Bandit algorithm is robust with respect to the

choices of its input parameters. Specifically, in Figure EC.1(a), (b), (c), and (d), the cumulative regret

remains largely unchanged, when we vary the G-MCP-Bandit algorithm’s input parameters (i.e., a, λ1, λ2,0,

h, t0). Furthermore, we find that the cumulative regret exhibits a non-monotonic pattern with respect to

these input parameters changes and that the cumulative regret seems to be minimized for the median values

of these parameters in EC.1(a), (b), (c), and (d). Hence, despite the mild improvement in the cumulative

regret, actively tuning parameters may continue to be beneficial for decision-makers in practice.

At last, Figure EC.1(e) reports the influence of the upper bound for the significant covariates dimension (s)

on the cumulative regret performance. In particular, we observe that the cumulative regret is monotonically

increasing in s. Note that decreasing s suggests a higher sparsity level and a smaller number of significant
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covariates. Hence, as expected, with less non-zero parameters needed to be estimated, the G-MCP-Bandit

algorithm will have better estimation accuracy, which in turn improves its regret performance.

EC.3.1. The Knowledge of the Sparsity Level s

To establish the G-MCP-Bandit algorithm’s regret upper bound, some input parameters may need to be

selected based on the sparsity level s. For example, the parameter a is chosen to ensure the condition a> 144s
κ

holds in Proposition 1 and Theorem 1. Such a selection condition is standard in the high-dimensional statistics

literature (e.g., Corollary 4 and Corollary 6 of Fan et al. 2014b and Lemma 5.3 of Wang et al. 2014) and the

high-dimensional bandit literature (e.g., Proposition 1 of Bastani and Bayati 2020). In practice, however,

decision-makers may not know the sparsity level s, especially without sufficient data at the beginning.

Therefore, in this subsection, we will investigate the question of if decision-makers don’t know the sparsity

level s, then how the suboptimal parameter selection will influence G-MCP-Bandit’s regret performance.

In particular, we use ŝ to represent decision-makers’ guess or estimation of the true sparsity level s.

Without knowing the true s value, decision-makers will tune the G-MCP-Bandit algorithm’s parameters by

using their estimated sparsity level ŝ. In Figure EC.2, we report five linear two-armed bandit experiments5, in

which the covariate dimension d= 100 and the true sparsity level s∈ {5,20,30,40,50}. For each experiment,

we perform 30 trials and report the average cumulative regret of five G-MCP-Bandit algorithms6 that are

tuned by using/assuming ŝ= 5, 20, 30, 40, and 50, respectively7. Therefore, in each experiment, only one

G-MCP-Bandit algorithm’s parameters are tuned by the true sparsity level s, and the other remaining four

G-MCP-Bandit algorithms used the suboptimal parameters tuned by the wrong estimated sparsity level ŝ.

We observe that the G-MCP-Bandit algorithm’s cumulative regret will be minimized when it is tuned

by using the correct sparsity value (i.e., if ŝ= s). For example, in Figure EC.2(a), where the true sparsity

level s = 5, the G-MCP-Bandit algorithm will have the lowest cumulative regret, if it was tuned by using

ŝ = 5 (see the blue line with asterisk marks). In addition, we find that the larger the distance between ŝ

and s, the worse the G-MCP-Bandit algorithm will perform. And, the regret differences among the G-MCP-

Bandit algorithms tuned by different ŝ values tend to be narrowed as the true sparsity level s increases. The

regret differences among G-MCP-Bandit algorithms tuned by different ŝ values highlight the importance of

accurately estimating s. Therefore, to improve the G-MCP-Bandit algorithm’s performance, decision-makers

should, whenever possible, (1) use their earlier experience or data previously obtained from similar scenarios

to improve the accuracy of estimating the sparsity level and (2) dynamically adjust the tuning parameters

for the G-MCP-Bandit algorithm, when more data become available to support a better estimation of the s

value.

5 Other experiments exhibit similar pattern and therefore are omitted.

6 The Lasso-Bandit algorithm also requires the knowledge of the sparsity level to tune parameters, and therefore its
cumulative regret performance depends on the estimated sparsity level ŝ. In our experiments, we observe that the
G-MCP-Bandit algorithm continues to outperform the Lasso-Bandit algorithm, if both were tuned under the same
ŝ. In addition, as the impact of the estimated sparsity level ŝ on the Lasso-Bandit algorithm is nearly identical to
that on the G-MCP-Bandit algorithm, we omit the Lasso-Bandit algorithm for better clarity in the figure.

7 We also tried ŝ value that is higher than 50, but the cumulative regret performance for cases with ŝ > 50 is very
close to the ŝ= 50 case and therefore will be omitted to avoid duplication.
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Figure EC.2 The influence of unknown s, where parameters for the G-MCP-Bandit algorithm are optimally tuned

by assuming decision-makers’ estimated sparsity levels to be ŝ= 5,20,30,40, and 50.
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(a) d= 100, s= 5
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(b) d= 100, s= 20
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(c) d= 100, s= 30
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(d) d= 100, s= 40
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(e) d= 100, s= 50

Remark EC.1. To theoretically remove the dependence of parameter a on the sparsity level s, we will

need to revise the existing assumption for a stronger version or introduce new assumptions. The dependence

of a on s comes from the proof of Proposition 3, in which we want to ensure the penalty weight wi for

i ∈ Sc to be positive. According to (EC.16), we must set a=O(s). One way to break such a dependence is

to further separate Sc into two subsets S3 and S4. We then count the index in Sc with small enough penalty

weight in S3 and S4 = Sc/S3. As the element in S3 indicates that the magnitude of the Lasso estimator is

large while the ground truth is 0, it will happen with low probability. Thus, the cardinality of S3 will not be

large. In fact, we can prove that |S3| ≤ s under some additional mild conditions. Then, by setting Ŝ = S ∪S3

and Ŝc = S4, for all i in Ŝc, the penalty weights will be large enough. Therefore, if we can further introduce

a stronger restricted eigenvalue condition so that κ
s
∥uŜ∥21 ≤ u⊤

E[∇2L(ξ)]u holds for the index set Ŝ with

|Ŝ| ≤ 2s, the proof of Proposition 3 will be able to be established without a dependence on s.

The knowledge of the s value in λ1 and C0 can be resolved by replacing s with ŝ
√
log t, where ŝ is a guess

or estimation on s. In our setting, s is defined as an upper bound for the cardinality of the significant index

sets for all arms, so our analysis works for the setting with an over-estimation on s. If we set s = ŝ
√
log t



ec35

in the algorithm, for a large enough t, we will enter the over-estimating scenario and be able to recover the

desired statistical properties of our algorithm, even when the initial parameter ŝ is incorrectly specified to

be small. However, the regret during the initial time periods may suffer as a result. We exclude the proof for

brevity.

We can also remove the dependence on s by introducing additional assumptions on covariates diver-

sity/balance from the nearly exploration-free bandit literature (e.g., Assumption 3 in Bastani et al. 2021

and Assumption 6 in Oh et al. 2021). With these assumptions, we can directly ensure that Proposition 6

holds even without enough random samples or with a wrong construction for the optimal decision set Πt in

the G-MCP-Bandit algorithm. The intuition is that by introducing these assumptions, we can ensure that

all dimensions are explored with a nearly equal chance so that the MCP estimator under 2sWL will have a

high probability to reach S1 = S. Therefore, even if we use wrong C0 and λ1 from under-estimating s, the

desirable regret bounds will continue to hold.
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EC.4. Appendix: Additional Experiments on Tencent dataset

In this section, we extend the Tencent search advertising experiments in §6.2 by considering the impacts of

a large number of ads and the robustness of the G-MCP-bandit algorithm under the model misspecification,

where the underlying reward function is not within the family of GLMs.

EC.4.1. The impact of a large number of ads

In this subsection, we expand the Tencent search advertising experiment to understand the impacts of a

large number of ads. To be able to accurately estimate the true parameter vectors for the oracle policy, it is

necessary to include ads with large session entries in all experiments. Hence, we first rank all ads that have

CTR higher than 1% by their frequencies and then pick the top 10, 100, and 1000 ads for three experiments.

The ads with the lowest frequency in these three experiments (i.e., K = 10, K = 100, and K = 1000) have

188997, 28954, and 2235 session entries, respectively, to provide estimations for parameter vectors under the

oracle policy with reasonable accuracy. The reward for each clicked ad is initialized at the beginning of each

experiment and randomly assigned to be $1, $5, or $10 with equal probability.

First, as expected, we observe that the computational time increases in the number of ads and the number

of users. In particular, with the Intel Xeon Platinum 8163 CPU (2.50GHz, 7 cores), the average computational

time (in seconds) for the G-MCP-Bandit algorithm to complete 20,000 users is 203 for K = 10, 226 for

K = 100, and 349 for K = 1000. When the number of users is increased to 40,000, the average computational

time will increase to 583, 661, and 1375 seconds, respectively. Similar to §6.2, we benchmark the G-MCP-

Bandit algorithm to OFUL, OLS-Bandit, Lasso-Bandit, the random policy, and the oracle policy. For each

experiment, we perform 10 trials for each algorithm and report the average revenue with up to 50,000 users.

Similar to the three-ad experiment in §6.2, we observe that the G-MCP-Bandit algorithm outperforms

other algorithms in terms of the average revenue performance; see Figure EC.3. When the number of ads is

comparatively small (e.g., K = 10), it does not need many users for all algorithms to identify the significant

covariates and/or to estimate parameter vectors to eventually select the optimal ads for incoming users.

Hence, the revenue improvement of the G-MCP-Bandit algorithm over other algorithms is most significant

when the number of users is not too large. For example, when T < 10000, the revenue improvement of

the G-MCP-Bandit algorithm over Lasso-Bandit is around 3%− 4%. As the number of users increases, all

algorithms eventually learn to accurately estimate parameter vectors to identify the revenue-maximizing ads.

Therefore, the average revenue performance of all algorithms begins to converge.

As the number of ads increases (e.g., K = 100 and K = 1000), accurately learning the parameter vectors

and identifying the optimal ad require more users, which is where the G-MCP-Bandit algorithm shines the

most. In particular, we observe that the revenue improvement of the G-MCP-Bandit algorithm over other

algorithms tends to grow with the number of ads. Figure EC.4 plots the percentage revenue improvement

of the G-MCP-Bandit algorithm over other benchmarking algorithms by fixing T = 5000, T = 20000, and

T = 50000. In all three scenarios, the benefits of the G-MCP-Bandit algorithm increase with the number

of ads. This observation suggests that the G-MCP-Bandit algorithm becomes more favorable in practice,

especially when there are large pools of available ads for decision-makers to choose from.
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Figure EC.3 The impact of the number of ads K on average revenue.
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(a) K=10
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(b) K=100
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(c) K=1000

Figure EC.4 The percentage revenue improvement of G-MCP-Bandit (Logistic) over other algorithms.
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(a) T=5000
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(b) T=20,000
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(c) T=50,000

EC.4.2. Robustness under model misspecification

In §6.2 and Appendix EC.4.1, we have examined the robustness of the G-MCP-Bandit algorithm under

the model misspecification, where all algorithms assume the linear model, but the true underlying reward

function actually follows the logistic model. Under such a misspecified setting, the G-MCP-Bandit algorithm

under the linear model outperforms all other algorithms in terms of average revenue performance.

In this subsection, we conduct another experiment to further test the robustness of the G-MCP-Bandit

algorithm under the model misspecification, where the true underlying model does not belong to the GLMs

family. In particular, we consider the scenario where the true underlying model follows the form of a two-

component Gaussian Mixture Model (GMM), which does not belong to the GLMs family. Theoretically,

GMM has better representation power than GLMs, and for the Tencent dataset, it actually fits the Tencent

data better8 than both the linear model and the logistic model. Analogous to Figure 3 in the main paper,

8 We train the GMM model with around three hundred covariates with the highest frequency.
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we consider the same three-ad experiment. For each algorithm, we perform 10 trials and report the average

revenue with up to 5000 users in Figure EC.5.

Figure EC.5 The robustness of the G-MCP-Bandit algorithm under the model misspecification, where the true

underlying model follows a two-component Gaussian Mixture Model.
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Consistent with all previous experiments, Figure EC.5 shows that the G-MCP-Bandit algorithm, under

both the linear model and the logistic model, continues to outperform other algorithms in terms of average

revenue performance. In addition, we observe that all algorithms in Figure EC.5 seem to generate less average

revenue that what is shown in Figure 3. This observation may be due to the fact that it is much more

difficult to use a GLM model (e.g., a linear or logistic model) to approximate the GMM model than to use

the linear model to approximate the logistic model, so the impacts of the model misspecification on the

average revenue performance are much more severe in Figure EC.5 than in Figure 3. Despite the negative

impacts of the model misspecification, the G-MCP-Bandit algorithm continues to outperform Lasso-Bandit

by 7.30% (under the logistic model) and 4.21% (under the linear model), and such an improvement is even

larger when compared to OLS-Bandit and OFUL-Bandit.


